These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28218327)

  • 41. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.
    Luo XG; Le Wu M; Wang XX; Zhong XH; Zhao K; Wang JN
    ChemSusChem; 2016 Feb; 9(3):296-301. PubMed ID: 26784865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors.
    Xia J; Dong G; Tian B; Yan Q; Zhang H; Liang X; Peng L
    Nanoscale; 2016 May; 8(19):9988-96. PubMed ID: 27121370
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physical and chemical descriptors for predicting interfacial thermal resistance.
    Wu YJ; Zhan T; Hou Z; Fang L; Xu Y
    Sci Data; 2020 Feb; 7(1):36. PubMed ID: 32015329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.
    Copic D; Hart AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8218-24. PubMed ID: 25822633
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique.
    Zhang X; Sun D; Li Y; Lee GH; Cui X; Chenet D; You Y; Heinz TF; Hone JC
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25923-9. PubMed ID: 26517143
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Communication: Thermal rectification in liquids by manipulating the solid-liquid interface.
    Murad S; Puri IK
    J Chem Phys; 2012 Aug; 137(8):081101. PubMed ID: 22938211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrical and thermal coupling to a single-wall carbon nanotube device using an electrothermal nanoprobe.
    Lee J; Liao A; Pop E; King WP
    Nano Lett; 2009 Apr; 9(4):1356-61. PubMed ID: 19245239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of structural asymmetry on thermal rectification in nanostructures.
    Yang X; Xu J; Wu S; Yu D; Cao B
    J Phys Condens Matter; 2018 Oct; 30(43):435305. PubMed ID: 30247146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrowetting of aligned carbon nanotube films.
    Zhu L; Xu J; Xiu Y; Sun Y; Hess DW; Wong CP
    J Phys Chem B; 2006 Aug; 110(32):15945-50. PubMed ID: 16898749
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heat transfer of graphene foams and carbon nanotube forests under forced convection.
    Cohen Y; Reddy SK; Ya'akobovitz A
    Nanotechnology; 2022 Jun; 33(34):. PubMed ID: 34325410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of amorphous carbon layer on the field emission characteristics of carbon nanotube film.
    Zhang Y; Du JL; Xu JH; Deng SZ; Xu NS; Chen J
    Ultramicroscopy; 2011 May; 111(6):426-30. PubMed ID: 21159440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High photoresponse in hybrid graphene-carbon nanotube infrared detectors.
    Lu R; Christianson C; Weintrub B; Wu JZ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11703-7. PubMed ID: 24164551
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal Spreading in Carbon Nanotube Coating.
    Kim D; Shin DS; Yu J; Kim H; Kim JH; Woo CS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8984-8. PubMed ID: 26726629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.