These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28218485)

  • 1. Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics.
    Mahajan BK; Yu X; Shou W; Pan H; Huang X
    Small; 2017 May; 13(17):. PubMed ID: 28218485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing Techniques for Bioresorbable Nanoparticles in Fabricating Flexible Conductive Interconnects.
    Li J; Luo S; Liu J; Xu H; Huang X
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29958406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics.
    Lee YK; Kim J; Kim Y; Kwak JW; Yoon Y; Rogers JA
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.
    Shou W; Mahajan BK; Ludwig B; Yu X; Staggs J; Huang X; Pan H
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28436054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
    Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering.
    Reenaers D; Marchal W; Biesmans I; Nivelle P; D'Haen J; Deferme W
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32392730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc hybrid sintering for printed transient sensors and wireless electronics.
    Fumeaux N; Briand D
    Npj Flex Electron; 2023; 7(1):14. PubMed ID: 38665150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.
    Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ
    ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.
    Polavarapu L; Manga KK; Yu K; Ang PK; Cao HD; Balapanuru J; Loh KP; Xu QH
    Nanoscale; 2011 May; 3(5):2268-74. PubMed ID: 21491022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Ag nanoplate ink for flexible electronics packaging.
    Li RZ; Hu A; Bridges D; Zhang T; Oakes KD; Peng R; Tumuluri U; Wu Z; Feng Z
    Nanoscale; 2015 Apr; 7(16):7368-77. PubMed ID: 25824693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.
    Yu X; Shou W; Mahajan BK; Huang X; Pan H
    Adv Mater; 2018 Jul; 30(28):e1707624. PubMed ID: 29736971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Sewing Approach to the Fabrication of Eco/bioresorbable Electronics.
    Wu Y; Rytkin E; Bimrose M; Li S; Choi YS; Lee G; Wang Y; Tang L; Madrid M; Wickerson G; Chang JK; Gu J; Zhang Y; Liu J; Tawfick S; Huang Y; King WP; Efimov IR; Rogers JA
    Small; 2023 Dec; 19(49):e2305017. PubMed ID: 37528504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering.
    Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R
    Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver-Copper Alloy Nanoinks for Ambient Temperature Sintering.
    Robinson R; Krause V; Wang S; Yan S; Shang G; Gordon J; Tycko S; Zhong CJ
    Langmuir; 2022 May; 38(18):5633-5644. PubMed ID: 35475615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printable Liquid Metal Microparticle Ink for Ultrastretchable Electronics.
    Li Y; Feng S; Cao S; Zhang J; Kong D
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50852-50859. PubMed ID: 33108172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices.
    Ryu H; Seo MH; Rogers JA
    Adv Healthc Mater; 2021 Sep; 10(17):e2002236. PubMed ID: 33586341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications.
    Cha GD; Kang D; Lee J; Kim DH
    Adv Healthc Mater; 2019 Jun; 8(11):e1801660. PubMed ID: 30957984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.