These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28218500)

  • 1. An Improved Strategy for the Synthesis of Ethylene Glycol by Oxamate-Mediated Catalytic Hydrogenation.
    Satapathy A; Gadge ST; Bhanage BM
    ChemSusChem; 2017 Apr; 10(7):1356-1359. PubMed ID: 28218500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Ethylene Glycol from Syngas via Oxidative Double Carbonylation of Ethanol to Diethyl Oxalate and Its Subsequent Hydrogenation.
    Satapathy A; Gadge ST; Bhanage BM
    ACS Omega; 2018 Sep; 3(9):11097-11103. PubMed ID: 31459218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pd/C-catalyzed synthesis of oxamates by oxidative cross double carbonylation of amines and alcohols under co-catalyst, base, dehydrating agent, and ligand-free conditions.
    Gadge ST; Bhanage BM
    J Org Chem; 2013 Jul; 78(13):6793-7. PubMed ID: 23734639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective catalytic two-step process for ethylene glycol from carbon monoxide.
    Dong K; Elangovan S; Sang R; Spannenberg A; Jackstell R; Junge K; Li Y; Beller M
    Nat Commun; 2016 Jul; 7():12075. PubMed ID: 27377550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.
    Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T
    ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts.
    Ribeiro LS; Órfão JJM; Pereira MFR
    Bioresour Technol; 2018 Sep; 263():402-409. PubMed ID: 29772501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol.
    Zheng MY; Wang AQ; Ji N; Pang JF; Wang XD; Zhang T
    ChemSusChem; 2010; 3(1):63-6. PubMed ID: 19998362
    [No Abstract]   [Full Text] [Related]  

  • 8. Direct synthesis of 1-indanones via Pd-catalyzed olefination and ethylene glycol-promoted aldol-type annulation cascade.
    Ruan J; Iggo JA; Xiao J
    Org Lett; 2011 Jan; 13(2):268-71. PubMed ID: 21162549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Hydrogenation of Sunflower Oil-derived FAMEs Catalyzed by the Efficient and Recyclable Palladium Nanoparticles in Polyethylene Glycol.
    Liu W; Lu G
    J Oleo Sci; 2017 Oct; 66(10):1161-1168. PubMed ID: 28924078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recoverable Pd/C catalyst mediated dehydrogenation of sterols and an improved synthesis of 1α-hydroxydehydroepiandrosterone.
    Yin YZ; Liu C; Tang LQ; Liu ZP
    Steroids; 2012 Nov; 77(13):1419-22. PubMed ID: 23000152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose.
    Tai Z; Zhang J; Wang A; Zheng M; Zhang T
    Chem Commun (Camb); 2012 Jul; 48(56):7052-4. PubMed ID: 22678506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over an amino-assisted Ru-based catalyst.
    Song L; He Y; Zhou C; Shu G; Ma K; Yue H
    Chem Commun (Camb); 2022 Oct; 58(83):11657-11660. PubMed ID: 36164825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid.
    Tai Z; Zhang J; Wang A; Pang J; Zheng M; Zhang T
    ChemSusChem; 2013 Apr; 6(4):652-8. PubMed ID: 23460602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity.
    Fang Y; Wang E
    Nanoscale; 2013 Mar; 5(5):1843-8. PubMed ID: 23376969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ru/C-Catalyzed Hydrogenation of Aqueous Glycolic Acid from Microalgae - Influence of pH and Biologically Relevant Additives.
    Harth FM; Celis J; Taubert A; Rössler S; Wagner H; Goepel M; Wilhelm C; Gläser R
    ChemistryOpen; 2022 Jul; 11(7):e202200050. PubMed ID: 35822926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium supported on chitosan as a recyclable and selective catalyst for the synthesis of 2-phenyl ethanol.
    Dabbawala AA; Sudheesh N; Bajaj HC
    Dalton Trans; 2012 Mar; 41(10):2910-7. PubMed ID: 22261791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst.
    Liu Y; Luo C; Liu H
    Angew Chem Int Ed Engl; 2012 Mar; 51(13):3249-53. PubMed ID: 22368071
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.
    Wang L; Zhang B; Meng X; Su DS; Xiao FS
    ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.