BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

643 related articles for article (PubMed ID: 28218516)

  • 1. Coumarin-Based Thermally Activated Delayed Fluorescence Emitters with High External Quantum Efficiency and Low Efficiency Roll-off in the Devices.
    Chen JX; Liu W; Zheng CJ; Wang K; Liang K; Shi YZ; Ou XM; Zhang XH
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8848-8854. PubMed ID: 28218516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient Full-Color Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes: Extremely Low Efficiency Roll-Off Utilizing a Host with Small Singlet-Triplet Splitting.
    Zhang D; Zhao C; Zhang Y; Song X; Wei P; Cai M; Duan L
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4769-4777. PubMed ID: 28094502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective Design Strategy for Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Emitters Achieving 18% External Quantum Efficiency Pure-Blue OLEDs with Extremely Low Roll-Off.
    Wang J; Zhang J; Jiang C; Yao C; Xi X
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57713-57724. PubMed ID: 34813274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Indolocarbazole-Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Roll-Off.
    Zhang D; Song X; Cai M; Kaji H; Duan L
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Design Tactics for Highly Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes.
    Konidena RK; Lee JY
    Chem Rec; 2019 Aug; 19(8):1499-1517. PubMed ID: 30375173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiro-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Nonradiative Decay for High-Quantum-Efficiency, Low-Roll-Off, Organic Light-Emitting Diodes.
    Sharma N; Maciejczyk M; Hall D; Li W; Liégeois V; Beljonne D; Olivier Y; Robertson N; Samuel IDW; Zysman-Colman E
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44628-44640. PubMed ID: 34516084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Benzimidazole-Based Bipolar Hosts: Highly Efficient Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Employing the Same Device Structure.
    Zhao Y; Wu C; Qiu P; Li X; Wang Q; Chen J; Ma D
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2635-43. PubMed ID: 26731494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission.
    Komatsu R; Ohsawa T; Sasabe H; Nakao K; Hayasaka Y; Kido J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4742-4749. PubMed ID: 28121118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off.
    Wu L; Wang K; Wang C; Fan XC; Shi YZ; Zhang X; Zhang SL; Ye J; Zheng CJ; Li YQ; Yu J; Ou XM; Zhang XH
    Chem Sci; 2020 Nov; 12(4):1495-1502. PubMed ID: 34163913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Rate-limited effect" of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes.
    Cai X; Li X; Xie G; He Z; Gao K; Liu K; Chen D; Cao Y; Su SJ
    Chem Sci; 2016 Jul; 7(7):4264-4275. PubMed ID: 30155073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Aggregation-Induced Delayed Fluorescence Luminogens for Solution-Processed OLEDs With Small Efficiency Roll-Off.
    Cai Z; Chen H; Guo J; Zhao Z; Tang BZ
    Front Chem; 2020; 8():193. PubMed ID: 32318542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of Thermally Activated Delayed Fluorescence of Blue Exciplex Emission: Fully Utilizing Exciton Energy for Highly Efficient Organic Light Emitting Diodes with Low Roll-Off.
    Wang Z; Wang H; Zhu J; Wu P; Shen B; Dou D; Wei B
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21346-21354. PubMed ID: 28581709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Solution-Processed Red Thermally Activated Delayed Fluorescence OLEDs Employing Aggregation-Induced Emission-Active Triazatruxene-Based Emitters.
    Liu Y; Chen Y; Li H; Wang S; Wu X; Tong H; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30652-30658. PubMed ID: 32538076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Optoelectronic Properties of Pyrimidine-Based TADF Emitters by Changing the Substituent for Organic Light-Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Roll-Off.
    Wu K; Zhang T; Zhan L; Zhong C; Gong S; Jiang N; Lu ZH; Yang C
    Chemistry; 2016 Jul; 22(31):10860-6. PubMed ID: 27331374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanopyrimidine-Carbazole Hybrid Host Materials for High-Efficiency and Low-Efficiency Roll-Off TADF OLEDs.
    Li SW; Yu CH; Ko CL; Chatterjee T; Hung WY; Wong KT
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12930-12936. PubMed ID: 29600699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Upconversion of Triplet Excitons for Conjugated Polymeric Thermally Activated Delayed Fluorescence Emitters by Employing an Intramolecular Sensitization Strategy.
    Liu Y; Tong X; Chen X; Wang Y; Ying S; Ren Z; Yan S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8997-9005. PubMed ID: 33570400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs.
    Matsuo K; Yasuda T
    Chem Sci; 2019 Dec; 10(46):10687-10697. PubMed ID: 32206251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue TADF Emitters Based on
    Lee YH; Lee W; Lee T; Lee D; Jung J; Yoo S; Lee MH
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45778-45788. PubMed ID: 34519475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Luminescent Pincer Gold(III) Aryl Emitters: Thermally Activated Delayed Fluorescence and Solution-Processed OLEDs.
    To WP; Zhou D; Tong GSM; Cheng G; Yang C; Che CM
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14036-14041. PubMed ID: 28865082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing Efficiency Roll-Off of TADF Based OLEDs by Constructing Emitting Layer With Dual Delayed Fluorescence.
    Zhang Y; Li Z; Li C; Wang Y
    Front Chem; 2019; 7():302. PubMed ID: 31114787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.