These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 28218612)
21. Attenuation of non-enzymatic thermal glycation of bovine serum albumin (BSA) using β-carotene. Bodiga VL; Eda SR; Veduruvalasa VD; Mididodla LD; Parise PK; Kodamanchili S; Jallepalli S; Inapurapu SP; Neerukonda M; Vemuri PK; Bodiga S Int J Biol Macromol; 2013 May; 56():41-8. PubMed ID: 23384487 [TBL] [Abstract][Full Text] [Related]
22. Increased protein glycation in cirrhosis and therapeutic strategies to prevent it. Ahmed N; Lüthen R; Häussinger D; Sebeková K; Schinzel R; Voelker W; Heidland A; Thornalley PJ Ann N Y Acad Sci; 2005 Jun; 1043():718-24. PubMed ID: 16037298 [TBL] [Abstract][Full Text] [Related]
23. Site specificity of glycation and carboxymethylation of bovine serum albumin by fructose. Hinton DJ; Ames JM Amino Acids; 2006 Jun; 30(4):425-34. PubMed ID: 16583308 [TBL] [Abstract][Full Text] [Related]
24. Advanced-glycation-end-product-cholesterol-aggregated-protein accelerates the proliferation of mesangial cells mediated by transforming-growth-factor-beta 1 receptors and the ERK-MAPK pathway. Hirasawa Y; Sakai T; Ito M; Yoshimura H; Feng Y; Nagamatsu T Eur J Pharmacol; 2011 Dec; 672(1-3):159-68. PubMed ID: 21989075 [TBL] [Abstract][Full Text] [Related]
25. Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: An in vitro and molecular interaction study. Alam MM; Ahmad I; Naseem I Int J Biol Macromol; 2015 Aug; 79():336-43. PubMed ID: 25982953 [TBL] [Abstract][Full Text] [Related]
26. Cathepsins D and L reduce the toxicity of advanced glycation end products. Grimm S; Horlacher M; Catalgol B; Hoehn A; Reinheckel T; Grune T Free Radic Biol Med; 2012 Mar; 52(6):1011-23. PubMed ID: 22245096 [TBL] [Abstract][Full Text] [Related]
27. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies. Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253 [TBL] [Abstract][Full Text] [Related]
28. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts. Ahmad MS; Pischetsrieder M; Ahmed N Eur J Pharmacol; 2007 Apr; 561(1-3):32-8. PubMed ID: 17321518 [TBL] [Abstract][Full Text] [Related]
29. Inhibition of human endothelial cell nitric oxide synthesis by advanced glycation end-products but not glucose: relevance to diabetes. Xu B; Ji Y; Yao K; Cao YX; Ferro A Clin Sci (Lond); 2005 Nov; 109(5):439-46. PubMed ID: 16022682 [TBL] [Abstract][Full Text] [Related]
30. Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA. Zhu P; Yang C; Chen LH; Ren M; Lao GJ; Yan L Arch Dermatol Res; 2011 Jul; 303(5):339-50. PubMed ID: 21132435 [TBL] [Abstract][Full Text] [Related]
31. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Kim J; Jeong IH; Kim CS; Lee YM; Kim JM; Kim JS Arch Pharm Res; 2011 Mar; 34(3):495-500. PubMed ID: 21547683 [TBL] [Abstract][Full Text] [Related]
32. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. Peng X; Cheng KW; Ma J; Chen B; Ho CT; Lo C; Chen F; Wang M J Agric Food Chem; 2008 Mar; 56(6):1907-11. PubMed ID: 18284204 [TBL] [Abstract][Full Text] [Related]
33. Mechanistic study of endogenous skin lesions in diabetic rats. Chen XF; Lin WD; Lu SL; Xie T; Ge K; Shi YQ; Zou JJ; Liu ZM; Liao WQ Exp Dermatol; 2010 Dec; 19(12):1088-95. PubMed ID: 20701629 [TBL] [Abstract][Full Text] [Related]
34. Advanced glycation end-products prepared in solution under high pressure contain epitopes distinct from those formed in the dry reaction at high temperature. Staniszewska M; Jarosz J; Jon M; Gamian A Arch Immunol Ther Exp (Warsz); 2005; 53(1):71-8. PubMed ID: 15761378 [TBL] [Abstract][Full Text] [Related]
35. Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios. Luers L; Rysiewski K; Dumpitak C; Birkmann E Rejuvenation Res; 2012 Apr; 15(2):201-5. PubMed ID: 22533432 [TBL] [Abstract][Full Text] [Related]
36. Is Iron Chelation Important in Preventing Glycation of Bovine Serum Albumin in Vitro? Galiniak S; Bartosz G; Sadowska-Bartosz I Cell Mol Biol Lett; 2015 Dec; 20(4):562-70. PubMed ID: 26146126 [TBL] [Abstract][Full Text] [Related]
37. Advanced glycation end product (AGE): characterization of the products from the reaction between D-glucose and serum albumin. Wu JT; Tu MC; Zhung P J Clin Lab Anal; 1996; 10(1):21-34. PubMed ID: 8926563 [TBL] [Abstract][Full Text] [Related]
38. Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation. Chen S; An FM; Yin L; Liu AR; Yin DK; Yao WB; Gao XD Neuroscience; 2014 Jan; 256():137-46. PubMed ID: 24183963 [TBL] [Abstract][Full Text] [Related]
39. Ascorbic acid and protein glycation in vitro. Sadowska-Bartosz I; Bartosz G Chem Biol Interact; 2015 Oct; 240():154-62. PubMed ID: 26163454 [TBL] [Abstract][Full Text] [Related]
40. Rutin metabolites: novel inhibitors of nonoxidative advanced glycation end products. Pashikanti S; de Alba DR; Boissonneault GA; Cervantes-Laurean D Free Radic Biol Med; 2010 Mar; 48(5):656-63. PubMed ID: 19969069 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]