BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28218911)

  • 1. Expanding the product portfolio of fungal type I fatty acid synthases.
    Zhu Z; Zhou YJ; Krivoruchko A; Grininger M; Zhao ZK; Nielsen J
    Nat Chem Biol; 2017 Apr; 13(4):360-362. PubMed ID: 28218911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and engineering of substrate shuttling by the acyl carrier protein (ACP) in fatty acid synthases (FASs).
    Rossini E; Gajewski J; Klaus M; Hummer G; Grininger M
    Chem Commun (Camb); 2018 Oct; 54(82):11606-11609. PubMed ID: 30264077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron cryomicroscopy observation of acyl carrier protein translocation in type I fungal fatty acid synthase.
    Lou JW; Iyer KR; Hasan SMN; Cowen LE; Mazhab-Jafari MT
    Sci Rep; 2019 Sep; 9(1):12987. PubMed ID: 31506493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of the acyl chain with the Saccharomyces cerevisiae acyl carrier protein.
    Perez DR; Leibundgut M; Wider G
    Biochemistry; 2015 Apr; 54(13):2205-13. PubMed ID: 25774789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reductase domain in a Type I fatty acid synthase from the apicomplexan Cryptosporidium parvum: restricted substrate preference towards very long chain fatty acyl thioesters.
    Zhu G; Shi X; Cai X
    BMC Biochem; 2010 Nov; 11():46. PubMed ID: 21092192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty Acid Biosynthesis: Chain-Length Regulation and Control.
    Heil CS; Wehrheim SS; Paithankar KS; Grininger M
    Chembiochem; 2019 Sep; 20(18):2298-2321. PubMed ID: 30908841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mammalian type I fatty acid synthase acyl carrier protein domain does not sequester acyl chains.
    Ploskoń E; Arthur CJ; Evans SE; Williams C; Crosby J; Simpson TJ; Crump MP
    J Biol Chem; 2008 Jan; 283(1):518-528. PubMed ID: 17971456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.
    Miyanaga A; Funa N; Awakawa T; Horinouchi S
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):871-6. PubMed ID: 18199837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid synthesis. Role of active site histidines and lysine in Cys-His-His-type beta-ketoacyl-acyl carrier protein synthases.
    von Wettstein-Knowles P; Olsen JG; McGuire KA; Henriksen A
    FEBS J; 2006 Feb; 273(4):695-710. PubMed ID: 16441657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity.
    Yan Q; Cordell WT; Jindra MA; Courtney DK; Kuckuk MK; Chen X; Pfleger BF
    Nat Commun; 2022 Mar; 13(1):1619. PubMed ID: 35338129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives on the evolution, assembly and conformational dynamics of fatty acid synthase type I (FAS I) systems.
    Grininger M
    Curr Opin Struct Biol; 2014 Apr; 25():49-56. PubMed ID: 24457260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of substrate shuttling by the acyl-carrier protein within the fatty acid mega-synthase.
    Anselmi C; Grininger M; Gipson P; Faraldo-Gómez JD
    J Am Chem Soc; 2010 Sep; 132(35):12357-64. PubMed ID: 20704262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tandem acyl carrier protein domains in polyunsaturated fatty acid synthases.
    Jiang H; Rajski SR; Shen B
    Methods Enzymol; 2009; 459():79-96. PubMed ID: 19362636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy.
    Gipson P; Mills DJ; Wouts R; Grininger M; Vonck J; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9164-9. PubMed ID: 20231485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimeric options for the auto-activation of the Saccharomyces cerevisiae FAS type I megasynthase.
    Johansson P; Mulinacci B; Koestler C; Vollrath R; Oesterhelt D; Grininger M
    Structure; 2009 Aug; 17(8):1063-74. PubMed ID: 19679086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together.
    Lomakin IB; Xiong Y; Steitz TA
    Cell; 2007 Apr; 129(2):319-32. PubMed ID: 17448991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids.
    Leber C; Da Silva NA
    Biotechnol Bioeng; 2014 Feb; 111(2):347-58. PubMed ID: 23928901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ralstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III.
    Mao YH; Ma JC; Li F; Hu Z; Wang HH
    PLoS One; 2015; 10(8):e0136261. PubMed ID: 26305336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate and product binding sites of yeast fatty acid synthase. Stoichiometry and binding kinetics of wild-type and in vitro mutated enzymes.
    Schuster H; Rautenstrauss B; Mittag M; Stratmann D; Schweizer E
    Eur J Biochem; 1995 Mar; 228(2):417-24. PubMed ID: 7705357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.
    Eriksen DT; HamediRad M; Yuan Y; Zhao H
    ACS Synth Biol; 2015 Jul; 4(7):808-14. PubMed ID: 25594225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.