These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 28218915)

  • 1. One-step optogenetics with multifunctional flexible polymer fibers.
    Park S; Guo Y; Jia X; Choe HK; Grena B; Kang J; Park J; Lu C; Canales A; Chen R; Yim YS; Choi GB; Fink Y; Anikeeva P
    Nat Neurosci; 2017 Apr; 20(4):612-619. PubMed ID: 28218915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic entrainment of neural oscillations with hybrid fiber probes.
    Kilias A; Canales A; Froriep UP; Park S; Egert U; Anikeeva P
    J Neural Eng; 2018 Oct; 15(5):056006. PubMed ID: 29923505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 5. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics.
    Pisanello F; Sileo L; Oldenburg IA; Pisanello M; Martiradonna L; Assad JA; Sabatini BL; De Vittorio M
    Neuron; 2014 Jun; 82(6):1245-54. PubMed ID: 24881834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo.
    Canales A; Jia X; Froriep UP; Koppes RA; Tringides CM; Selvidge J; Lu C; Hou C; Wei L; Fink Y; Anikeeva P
    Nat Biotechnol; 2015 Mar; 33(3):277-84. PubMed ID: 25599177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.
    Lee J; Ozden I; Song YK; Nurmikko AV
    Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology.
    Zou L; Tian H; Guan S; Ding J; Gao L; Wang J; Fang Y
    Nat Commun; 2021 Oct; 12(1):5871. PubMed ID: 34620851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation.
    Eriksson D; Schneider A; Thirumalai A; Alyahyay M; de la Crompe B; Sharma K; Ruther P; Diester I
    Nat Commun; 2022 Feb; 13(1):985. PubMed ID: 35190556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medial prefrontal D1 dopamine neurons control food intake.
    Land BB; Narayanan NS; Liu RJ; Gianessi CA; Brayton CE; Grimaldi DM; Sarhan M; Guarnieri DJ; Deisseroth K; Aghajanian GK; DiLeone RJ
    Nat Neurosci; 2014 Feb; 17(2):248-53. PubMed ID: 24441680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications.
    Wu F; Stark E; Im M; Cho IJ; Yoon ES; Buzsáki G; Wise KD; Yoon E
    J Neural Eng; 2013 Oct; 10(5):056012. PubMed ID: 23985803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetics in Mice Performing a Visual Discrimination Task: Measurement and Suppression of Retinal Activation and the Resulting Behavioral Artifact.
    Danskin B; Denman D; Valley M; Ollerenshaw D; Williams D; Groblewski P; Reid C; Olsen S; Blanche T; Waters J
    PLoS One; 2015; 10(12):e0144760. PubMed ID: 26657323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation.
    Han X; Jing MY; Zhao TY; Wu N; Song R; Li J
    Metab Brain Dis; 2017 Oct; 32(5):1491-1502. PubMed ID: 28523568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.
    McGarry LM; Carter AG
    J Neurosci; 2016 Sep; 36(36):9391-406. PubMed ID: 27605614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polymer-based neural microimplant for optogenetic applications: design and first in vivo study.
    Rubehn B; Wolff SB; Tovote P; Lüthi A; Stieglitz T
    Lab Chip; 2013 Feb; 13(4):579-88. PubMed ID: 23306183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity.
    Richner TJ; Thongpang S; Brodnick SK; Schendel AA; Falk RW; Krugner-Higby LA; Pashaie R; Williams JC
    J Neural Eng; 2014 Feb; 11(1):016010. PubMed ID: 24445482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal Functional Analysis Platform: 2. Development of Si Opto-Electro Multifunctional Neural Probe with Multiple Optical Waveguides and Embedded Optical Fiber for Optogenetics.
    Tanaka T; Katayama N; Sakamoto K; Osanai M; Mushiake H
    Adv Exp Med Biol; 2021; 1293():481-491. PubMed ID: 33398835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals.
    Cao Y; Pan S; Yan M; Sun C; Huang J; Zhong C; Wang L; Yi L
    BMC Biol; 2021 Nov; 19(1):252. PubMed ID: 34819062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of optogenetic photoexcitation of infralimbic cortex inputs to the basolateral amygdala on conditioned fear and extinction.
    Bukalo O; Nonaka M; Weinholtz CA; Mendez A; Taylor WW; Holmes A
    Behav Brain Res; 2021 Jan; 396():112913. PubMed ID: 32950607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.