BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28218992)

  • 1. Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis.
    Nobusawa T; Hori K; Mori H; Kurokawa K; Ohta H
    Plant J; 2017 May; 90(3):547-559. PubMed ID: 28218992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A homolog of Arabidopsis SDP1 lipase in Nannochloropsis is involved in degradation of de novo-synthesized triacylglycerols in the endoplasmic reticulum.
    Nobusawa T; Yamakawa-Ayukawa K; Saito F; Nomura S; Takami A; Ohta H
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Sep; 1864(9):1185-1193. PubMed ID: 31152796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica.
    Li DW; Cen SY; Liu YH; Balamurugan S; Zheng XY; Alimujiang A; Yang WD; Liu JS; Li HY
    J Biotechnol; 2016 Jul; 229():65-71. PubMed ID: 27164260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae.
    Du ZY; Benning C
    Subcell Biochem; 2016; 86():179-205. PubMed ID: 27023236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased triacylglycerol production in oleaginous microalga Neochloris oleoabundans by overexpression of plastidial lysophosphatidic acid acyltransferase.
    Chungjatupornchai W; Areerat K; Fa-Aroonsawat S
    Microb Cell Fact; 2019 Mar; 18(1):53. PubMed ID: 30866936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid Production from Nannochloropsis.
    Ma XN; Chen TP; Yang B; Liu J; Chen F
    Mar Drugs; 2016 Mar; 14(4):. PubMed ID: 27023568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry and Biotechnology of Lipid Accumulation in the Microalga
    Xu Y
    J Agric Food Chem; 2022 Sep; 70(37):11500-11509. PubMed ID: 36083864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis.
    Taleb A; Pruvost J; Legrand J; Marec H; Le-Gouic B; Mirabella B; Legeret B; Bouvet S; Peltier G; Li-Beisson Y; Taha S; Takache H
    Bioresour Technol; 2015 Feb; 177():224-32. PubMed ID: 25496942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis.
    Angkawijaya AE; Nguyen VC; Nakamura Y
    New Phytol; 2019 Oct; 224(1):336-351. PubMed ID: 31211859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic insights from the oleaginous model alga Nannochloropsis gaditana.
    Jinkerson RE; Radakovits R; Posewitz MC
    Bioengineered; 2013; 4(1):37-43. PubMed ID: 22922732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica.
    Chen JW; Liu WJ; Hu DX; Wang X; Balamurugan S; Alimujiang A; Yang WD; Liu JS; Li HY
    Biotechnol Appl Biochem; 2017 Sep; 64(5):620-626. PubMed ID: 27572053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced triacylglycerol production in oleaginous microalga Neochloris oleoabundans by co-overexpression of lipogenic genes: Plastidial LPAAT1 and ER-located DGAT2.
    Chungjatupornchai W; Fa-Aroonsawat S
    J Biosci Bioeng; 2021 Feb; 131(2):124-130. PubMed ID: 33069576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An increase in the membrane lipids recycling by PDAT overexpression stimulates the accumulation of triacylglycerol in Nannochloropsis gaditana.
    Fattore N; Bucci F; Bellan A; Bossi S; Maffei ME; Morosinotto T
    J Biotechnol; 2022 Sep; 357():28-37. PubMed ID: 35931238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.
    Kim HJ; Silva JE; Iskandarov U; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB
    Plant J; 2015 Dec; 84(5):1021-33. PubMed ID: 26505880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.
    Merchant SS; Kropat J; Liu B; Shaw J; Warakanont J
    Curr Opin Biotechnol; 2012 Jun; 23(3):352-63. PubMed ID: 22209109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Insights into Phosphorus Deprivation Boosted Lipid Synthesis in the Marine Alga
    Shi Y; Liu M; Ding W; Liu J
    J Agric Food Chem; 2020 Oct; 68(41):11488-11502. PubMed ID: 32955875
    [No Abstract]   [Full Text] [Related]  

  • 18. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels.
    Wan L; Han J; Sang M; Li A; Wu H; Yin S; Zhang C
    PLoS One; 2012; 7(4):e35142. PubMed ID: 22536352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of the oleaginous alga Nannochloropsis for enriching eicosapentaenoic acid in triacylglycerol by combined pulling and pushing strategies.
    Liu J; Liu M; Pan Y; Shi Y; Hu H
    Metab Eng; 2022 Jan; 69():163-174. PubMed ID: 34864212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches.
    Misra N; Panda PK; Parida BK
    Mol Biol Rep; 2014 Dec; 41(12):8319-32. PubMed ID: 25280541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.