These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 28219003)
21. Targeting primary acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143). Zhang Y; Saavedra E; Tang R; Gu Y; Lappin P; Trajkovic D; Liu SH; Smeal T; Fantin V; De Botton S; Legrand O; Delhommeau F; Pernasetti F; Louache F Sci Rep; 2017 Aug; 7(1):7305. PubMed ID: 28779088 [TBL] [Abstract][Full Text] [Related]
22. Improving chemotherapeutic efficiency in acute myeloid leukemia treatments by chemically synthesized peptide interfering with CXCR4/CXCL12 axis. Li X; Guo H; Duan H; Yang Y; Meng J; Liu J; Wang C; Xu H Sci Rep; 2015 Nov; 5():16228. PubMed ID: 26538086 [TBL] [Abstract][Full Text] [Related]
23. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Khare T; Bissonnette M; Khare S Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298991 [TBL] [Abstract][Full Text] [Related]
24. The contributory roles of the CXCL12/CXCR4/CXCR7 axis in normal and malignant hematopoiesis: A possible therapeutic target in hematologic malignancies. Mehrpouri M Eur J Pharmacol; 2022 Apr; 920():174831. PubMed ID: 35183534 [TBL] [Abstract][Full Text] [Related]
25. Significance of CXCL12/CXCR4 Ligand/Receptor Axis in Various Aspects of Acute Myeloid Leukemia. Yazdani Z; Mousavi Z; Moradabadi A; Hassanshahi G Cancer Manag Res; 2020; 12():2155-2165. PubMed ID: 32273755 [TBL] [Abstract][Full Text] [Related]
26. Oncogenic roles and drug target of CXCR4/CXCL12 axis in lung cancer and cancer stem cell. Wang Z; Sun J; Feng Y; Tian X; Wang B; Zhou Y Tumour Biol; 2016 Jul; 37(7):8515-28. PubMed ID: 27079871 [TBL] [Abstract][Full Text] [Related]
28. Targeting CXCR4 in AML and ALL. Cancilla D; Rettig MP; DiPersio JF Front Oncol; 2020; 10():1672. PubMed ID: 33014834 [TBL] [Abstract][Full Text] [Related]
29. The bone marrow microenvironment and leukemia: biology and therapeutic targeting. Sison EA; Brown P Expert Rev Hematol; 2011 Jun; 4(3):271-83. PubMed ID: 21668393 [TBL] [Abstract][Full Text] [Related]
30. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Burger JA; Kipps TJ Blood; 2006 Mar; 107(5):1761-7. PubMed ID: 16269611 [TBL] [Abstract][Full Text] [Related]
31. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis--Untapped Potential in the Tumor Microenvironment. Scala S Clin Cancer Res; 2015 Oct; 21(19):4278-85. PubMed ID: 26199389 [TBL] [Abstract][Full Text] [Related]
32. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways. Scupoli MT; Donadelli M; Cioffi F; Rossi M; Perbellini O; Malpeli G; Corbioli S; Vinante F; Krampera M; Palmieri M; Scarpa A; Ariola C; Foà R; Pizzolo G Haematologica; 2008 Apr; 93(4):524-32. PubMed ID: 18322253 [TBL] [Abstract][Full Text] [Related]
33. Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Möhle R; Schittenhelm M; Failenschmid C; Bautz F; Kratz-Albers K; Serve H; Brugger W; Kanz L Br J Haematol; 2000 Sep; 110(3):563-72. PubMed ID: 10997965 [TBL] [Abstract][Full Text] [Related]
34. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Tavor S; Eisenbach M; Jacob-Hirsch J; Golan T; Petit I; Benzion K; Kay S; Baron S; Amariglio N; Deutsch V; Naparstek E; Rechavi G Leukemia; 2008 Dec; 22(12):2151-5158. PubMed ID: 18769446 [TBL] [Abstract][Full Text] [Related]
35. Defining the in vivo characteristics of acute myeloid leukemia cells behavior by intravital imaging. Duarte D; Amarteifio S; Ang H; Kong IY; Ruivo N; Pruessner G; Hawkins ED; Lo Celso C Immunol Cell Biol; 2019 Feb; 97(2):229-235. PubMed ID: 30422351 [TBL] [Abstract][Full Text] [Related]
36. Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy. Zhou W; Guo S; Liu M; Burow ME; Wang G Curr Med Chem; 2019; 26(17):3026-3041. PubMed ID: 28875842 [TBL] [Abstract][Full Text] [Related]
37. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Burger M; Hartmann T; Krome M; Rawluk J; Tamamura H; Fujii N; Kipps TJ; Burger JA Blood; 2005 Sep; 106(5):1824-30. PubMed ID: 15905192 [TBL] [Abstract][Full Text] [Related]
38. The chemokine network in acute myelogenous leukemia: molecular mechanisms involved in leukemogenesis and therapeutic implications. Kittang AO; Hatfield K; Sand K; Reikvam H; Bruserud Ø Curr Top Microbiol Immunol; 2010; 341():149-72. PubMed ID: 20376612 [TBL] [Abstract][Full Text] [Related]
39. AMD3100 disrupts the cross-talk between chronic lymphocytic leukemia cells and a mesenchymal stromal or nurse-like cell-based microenvironment: pre-clinical evidence for its association with chronic lymphocytic leukemia treatments. Stamatopoulos B; Meuleman N; De Bruyn C; Pieters K; Mineur P; Le Roy C; Saint-Georges S; Varin-Blank N; Cymbalista F; Bron D; Lagneaux L Haematologica; 2012 Apr; 97(4):608-15. PubMed ID: 22058221 [TBL] [Abstract][Full Text] [Related]
40. Enhanced Anti-Leukemic Effects through Induction of Immunomodulating Microenvironment by Blocking CXCR4 and PD-L1 in an AML Mouse Model. Hwang HS; Han AR; Lee JY; Park GS; Min WS; Kim HJ Immunol Invest; 2019 Jan; 48(1):96-105. PubMed ID: 30204524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]