BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28219012)

  • 1. Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (E)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity.
    Ito S; Hinoshita M; Suzuki E; Ojika M; Wakamatsu K
    Chem Res Toxicol; 2017 Mar; 30(3):859-868. PubMed ID: 28219012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Oligomerization of DBL Catechol, a potential Cytotoxic Compound for Melanocytes, Reveals the Occurrence of Novel Ionic Diels-Alder Type Additions.
    Sugumaran M; Umit K; Evans J; Muriph R; Ito S; Wakamatsu K
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32942764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosinase-catalyzed oxidation of resveratrol produces a highly reactive ortho-quinone: Implications for melanocyte toxicity.
    Ito S; Fujiki Y; Matsui N; Ojika M; Wakamatsu K
    Pigment Cell Melanoma Res; 2019 Nov; 32(6):766-776. PubMed ID: 31264351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins.
    Ito S; Okura M; Nakanishi Y; Ojika M; Wakamatsu K; Yamashita T
    Pigment Cell Melanoma Res; 2015 May; 28(3):295-306. PubMed ID: 25713930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity.
    Ito S; Ojika M; Yamashita T; Wakamatsu K
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical Mechanism of Rhododendrol-Induced Leukoderma.
    Ito S; Wakamatsu K
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29439519
    [No Abstract]   [Full Text] [Related]  

  • 7. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols.
    Ito S; Wakamatsu K
    J Dermatol Sci; 2015 Oct; 80(1):18-24. PubMed ID: 26228294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human tyrosinase is able to oxidize both enantiomers of rhododendrol.
    Ito S; Gerwat W; Kolbe L; Yamashita T; Ojika M; Wakamatsu K
    Pigment Cell Melanoma Res; 2014 Nov; 27(6):1149-53. PubMed ID: 25130058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Oxidation of Equol by Tyrosinase Produces a Unique Di-
    Tanaka H; Ito S; Ojika M; Nishimaki-Mogami T; Kondo K; Wakamatsu K
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds.
    Nishimaki-Mogami T; Ito S; Cui H; Akiyama T; Tamehiro N; Adachi R; Wakamatsu K; Ikarashi Y; Kondo K
    J Dermatol Sci; 2022 Nov; 108(2):77-86. PubMed ID: 36567223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reactive ortho-quinone generated by tyrosinase-catalyzed oxidation of the skin depigmenting agent monobenzone: self-coupling and thiol-conjugation reactions and possible implications for melanocyte toxicity.
    Manini P; Napolitano A; Westerhof W; Riley PA; d'Ischia M
    Chem Res Toxicol; 2009 Aug; 22(8):1398-405. PubMed ID: 19610592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potent pro-oxidant activity of rhododendrol-eumelanin is enhanced by ultraviolet A radiation.
    Ito S; Agata M; Okochi K; Wakamatsu K
    Pigment Cell Melanoma Res; 2018 Jul; 31(4):523-528. PubMed ID: 29474003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45.
    Kim M; Baek HS; Lee M; Park H; Shin SS; Choi DW; Lim KM
    Toxicol In Vitro; 2016 Apr; 32():339-46. PubMed ID: 26867644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma.
    Gabe Y; Miyaji A; Kohno M; Hachiya A; Moriwaki S; Baba T
    J Dermatol Sci; 2018 Sep; 91(3):311-316. PubMed ID: 30005897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Leukoderma caused by chemicals: mechanisms underlying 4-alkyl/aryl-substituted phenols- and rhododendrol-induced melanocyte loss].
    Nishimaki-Mogami T
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2015; (133):13-20. PubMed ID: 26821466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of melanocytes-specific cytotoxicity induced by phenol compounds having a prooxidant effect, relating to the appearance of leukoderma.
    Nagata T; Ito S; Itoga K; Kanazawa H; Masaki H
    Biomed Res Int; 2015; 2015():479798. PubMed ID: 25861631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism.
    Sasaki M; Kondo M; Sato K; Umeda M; Kawabata K; Takahashi Y; Suzuki T; Matsunaga K; Inoue S
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):754-63. PubMed ID: 24890809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin.
    Abe Y; Okamura K; Kawaguchi M; Hozumi Y; Aoki H; Kunisada T; Ito S; Wakamatsu K; Matsunaga K; Suzuki T
    J Dermatol Sci; 2016 Jan; 81(1):35-43. PubMed ID: 26547111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potent pro-oxidant activity of rhododendrol-eumelanin induces cysteine depletion in B16 melanoma cells.
    Ito S; Okura M; Wakamatsu K; Yamashita T
    Pigment Cell Melanoma Res; 2017 Jan; 30(1):63-67. PubMed ID: 28132436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of CD86 and IL-12 by rhododendrol in THP-1 cells cocultured with melanocytes through ROS and ATP.
    Katahira Y; Sakamoto E; Watanabe A; Furusaka Y; Inoue S; Hasegawa H; Mizoguchi I; Yo K; Yamaji F; Toyoda A; Yoshimoto T
    J Dermatol Sci; 2022 Dec; 108(3):167-177. PubMed ID: 36610941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.