These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28219030)

  • 1. In situ-synthesized cadmium sulfide nanowire photosensor with a parylene passivation layer for chemiluminescent immunoassays.
    Im JH; Kim HR; An BG; Chang YW; Kang MJ; Lee TG; Son JG; Park JG; Pyun JC
    Biosens Bioelectron; 2017 Jun; 92():221-228. PubMed ID: 28219030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive in situ-synthesized cadmium sulfide (CdS) nanowire photosensor for chemiluminescent immunoassays.
    Kim HR; An BG; Chang YW; Kang MJ; Park JG; Pyun JC
    Enzyme Microb Technol; 2020 Feb; 133():109457. PubMed ID: 31874687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemiluminescent lateral-flow immunoassays by using in-situ synthesis of CdS NW photosensor.
    An BG; Kim HR; Kang MJ; Park JG; Chang YW; Pyun JC
    Anal Chim Acta; 2016 Jul; 927():99-106. PubMed ID: 27237842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cesium Lead Bromide (CsPbBr
    Kim HR; Bong JH; Park JH; Song Z; Kang MJ; Son DH; Pyun JC
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29392-29405. PubMed ID: 34137577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of luminescence from ZnO/CdS core/shell nanowire arrays.
    Wang Z; Wang J; Sham TK; Yang S
    Nanoscale; 2014 Aug; 6(16):9783-90. PubMed ID: 25008783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer.
    Kim DM; Rahman MA; Do MH; Ban C; Shim YB
    Biosens Bioelectron; 2010 Mar; 25(7):1781-8. PubMed ID: 20116233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical biosensor using enzyme-catalyzed in situ propagation of CdS quantum dots on graphene oxide.
    Zeng X; Tu W; Li J; Bao J; Dai Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16197-203. PubMed ID: 25154012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One step immobilization of peptides and proteins by using modified parylene with formyl groups.
    Ko H; Lee EH; Lee GY; Kim J; Jeon BJ; Kim MH; Pyun JC
    Biosens Bioelectron; 2011 Dec; 30(1):56-60. PubMed ID: 21945140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica-coated and annealed CdS nanowires with enhanced photoluminescence.
    Liang S; Li M; Wang JH; Liu XL; Hao ZH; Zhou L; Yu XF; Wang QQ
    Opt Express; 2013 Feb; 21(3):3253-8. PubMed ID: 23481784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CdS and CdTeS quantum dot decorated TiO2 nanowires. Synthesis and photoefficiency.
    Medina-Gonzalez Y; Xu WZ; Chen B; Farhanghi N; Charpentier PA
    Nanotechnology; 2011 Feb; 22(6):065603. PubMed ID: 21212494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode.
    Zhao WW; Ma ZY; Yu PP; Dong XY; Xu JJ; Chen HY
    Anal Chem; 2012 Jan; 84(2):917-23. PubMed ID: 22148581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure.
    Zhao K; Yan X; Gu Y; Kang Z; Bai Z; Cao S; Liu Y; Zhang X; Zhang Y
    Small; 2016 Jan; 12(2):245-51. PubMed ID: 26618499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing.
    Guo C; Huo H; Han X; Xu C; Li H
    Anal Chem; 2014 Jan; 86(1):876-83. PubMed ID: 24304369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification.
    Wang GL; Shu JX; Dong YM; Wu XM; Li ZJ
    Biosens Bioelectron; 2015 Apr; 66():283-9. PubMed ID: 25437365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An off-on-off electrochemiluminescence approach for ultrasensitive detection of thrombin.
    Deng L; Du Y; Xu JJ; Chen HY
    Biosens Bioelectron; 2014 Sep; 59():58-63. PubMed ID: 24699694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-induced large exciton energy shifts in buckled CdS nanowires.
    Sun L; Kim DH; Oh KH; Agarwal R
    Nano Lett; 2013 Aug; 13(8):3836-42. PubMed ID: 23899018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable alignment of CdS nanowires based on efficient roll-on transfer technique.
    Yan S; Shi Y; Xiao Z; Wang J; Hu D; Xul X; Lu T; Liu A; Gao F
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4242-6. PubMed ID: 23862480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemiluminescence excited photoelectrochemistry using graphene-quantum dots nanocomposite for biosensing.
    Tu W; Wang W; Lei J; Deng S; Ju H
    Chem Commun (Camb); 2012 Jul; 48(52):6535-7. PubMed ID: 22622620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Z-scheme I-BiOCl/CdS with abundant oxygen vacancies as highly effective cathodic material for photocathodic immunoassay.
    Wang H; Zhang B; Xi J; Zhao F; Zeng B
    Biosens Bioelectron; 2019 Sep; 141():111443. PubMed ID: 31233984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CdS nanoparticles-enhanced chemiluminescence and determination of baicalin in pharmaceutical preparations.
    Chen X; Tan X; Wang J
    Luminescence; 2013; 28(2):176-82. PubMed ID: 22473830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.