These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28219110)

  • 1. Estimating inverse probability weights using super learner when weight-model specification is unknown in a marginal structural Cox model context.
    Karim ME; Platt RW;
    Stat Med; 2017 Jun; 36(13):2032-2047. PubMed ID: 28219110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.
    Gruber S; Logan RW; Jarrín I; Monge S; Hernán MA
    Stat Med; 2015 Jan; 34(1):106-17. PubMed ID: 25316152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marginal structural Cox models for estimating the association between β-interferon exposure and disease progression in a multiple sclerosis cohort.
    Karim ME; Gustafson P; Petkau J; Zhao Y; Shirani A; Kingwell E; Evans C; van der Kop M; Oger J; Tremlett H
    Am J Epidemiol; 2014 Jul; 180(2):160-71. PubMed ID: 24939980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling.
    Neugebauer R; Fireman B; Roy JA; Raebel MA; Nichols GA; O'Connor PJ
    J Clin Epidemiol; 2013 Aug; 66(8 Suppl):S99-109. PubMed ID: 23849160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving propensity score estimators' robustness to model misspecification using super learner.
    Pirracchio R; Petersen ML; van der Laan M
    Am J Epidemiol; 2015 Jan; 181(2):108-19. PubMed ID: 25515168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies.
    Karim ME; Petkau J; Gustafson P; Platt RW; Tremlett H;
    Stat Methods Med Res; 2018 Jun; 27(6):1709-1722. PubMed ID: 27659168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling time-varying exposure using inverse probability of treatment weights.
    Grafféo N; Latouche A; Geskus RB; Chevret S
    Biom J; 2018 Mar; 60(2):323-332. PubMed ID: 29280181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propensity score and doubly robust methods for estimating the effect of treatment on censored cost.
    Li J; Handorf E; Bekelman J; Mitra N
    Stat Med; 2016 May; 35(12):1985-99. PubMed ID: 26678242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of outcome model misspecification on regression and doubly-robust inverse probability weighting to estimate causal effect.
    Lefebvre G; Gustafson P
    Int J Biostat; 2010; 6(2):Article 15. PubMed ID: 21969999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric and nonparametric propensity score estimation in multilevel observational studies.
    Salditt M; Nestler S
    Stat Med; 2023 Oct; 42(23):4147-4176. PubMed ID: 37532119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible parametric approach for estimating continuous-time inverse probability of treatment and censoring weights.
    Saarela O; Liu ZA
    Stat Med; 2016 Oct; 35(23):4238-51. PubMed ID: 27139501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Flexible Modeling of Continuous Covariates in Inverse-Weighted Estimators.
    Kyle RP; Moodie EEM; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2019 Jun; 188(6):1181-1191. PubMed ID: 30649165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted learning in real-world comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Stat Med; 2014 Jun; 33(14):2480-520. PubMed ID: 24535915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Statistical Approaches for Dealing With Immortal Time Bias in Drug Effectiveness Studies.
    Karim ME; Gustafson P; Petkau J; Tremlett H;
    Am J Epidemiol; 2016 Aug; 184(4):325-35. PubMed ID: 27455963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Should a propensity score model be super? The utility of ensemble procedures for causal adjustment.
    Alam S; Moodie EEM; Stephens DA
    Stat Med; 2019 Apr; 38(9):1690-1702. PubMed ID: 30586681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjusting for observational secondary treatments in estimating the effects of randomized treatments.
    Zhang M; Wang Y
    Biostatistics; 2013 Jul; 14(3):491-501. PubMed ID: 23349243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation from a known Cox MSM using standard parametric models for the g-formula.
    Young JG; Tchetgen Tchetgen EJ
    Stat Med; 2014 Mar; 33(6):1001-14. PubMed ID: 24151138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Balance Super Learner: A robust adaptation of the Super Learner to improve estimation of the average treatment effect in the treated based on propensity score matching.
    Pirracchio R; Carone M
    Stat Methods Med Res; 2018 Aug; 27(8):2504-2518. PubMed ID: 28339317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A test for the correct specification of marginal structural models.
    Sall A; Aubé K; Trudel X; Brisson C; Talbot D
    Stat Med; 2019 Jul; 38(17):3168-3183. PubMed ID: 30856294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.