These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 28219527)
21. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Choudhary DK; Johri BN Microbiol Res; 2009; 164(5):493-513. PubMed ID: 18845426 [TBL] [Abstract][Full Text] [Related]
22. Plant growth-promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens. Madhaiyan M; Suresh Reddy BV; Anandham R; Senthilkumar M; Poonguzhali S; Sundaram SP; Sa T Curr Microbiol; 2006 Oct; 53(4):270-6. PubMed ID: 16941245 [TBL] [Abstract][Full Text] [Related]
23. Inter-species interaction of bradyrhizobia affects their colonization and plant growth promotion in Arachis hypogaea. Patra D; Pal KK; Mandal S World J Microbiol Biotechnol; 2024 Jun; 40(8):234. PubMed ID: 38844667 [TBL] [Abstract][Full Text] [Related]
24. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Liu D; Yang Q; Ge K; Hu X; Qi G; Du B; Liu K; Ding Y Braz J Microbiol; 2017; 48(4):656-670. PubMed ID: 28645648 [TBL] [Abstract][Full Text] [Related]
25. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Masciarelli O; Llanes A; Luna V Microbiol Res; 2014; 169(7-8):609-15. PubMed ID: 24280513 [TBL] [Abstract][Full Text] [Related]
26. Potential of Bradyrhizobia inoculation to promote peanut growth and beneficial Rhizobacteria abundance. Shang JY; Wu Y; Huo B; Chen L; Wang ET; Sui Y; Chen WF; Tian CF; Chen WX; Sui XH J Appl Microbiol; 2021 Nov; 131(5):2500-2515. PubMed ID: 33966321 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of efficacy and mechanism of Jia S; Song C; Dong H; Yang X; Li X; Ji M; Chu J Front Microbiol; 2023; 14():1111965. PubMed ID: 36876084 [TBL] [Abstract][Full Text] [Related]
28. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
29. Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Camacho M; Santamaría C; Temprano F; Rodriguez-Navarro DN; Daza A Can J Microbiol; 2001 Nov; 47(11):1058-62. PubMed ID: 11766056 [TBL] [Abstract][Full Text] [Related]
30. Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Bogino P; Banchio E; Bonfiglio C; Giordano W Curr Microbiol; 2008 Jan; 56(1):66-72. PubMed ID: 17899258 [TBL] [Abstract][Full Text] [Related]
31. Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Cesari A; Paulucci N; López-Gómez M; Hidalgo-Castellanos J; Plá CL; Dardanelli MS Plant Physiol Biochem; 2019 Sep; 142():519-527. PubMed ID: 31450055 [TBL] [Abstract][Full Text] [Related]
32. The Endophytic Fungus Phomopsis liquidambari Increases Nodulation and N Xie XG; Fu WQ; Zhang FM; Shi XM; Zeng YT; Li H; Zhang W; Dai CC Microb Ecol; 2017 Aug; 74(2):427-440. PubMed ID: 28168354 [TBL] [Abstract][Full Text] [Related]
33. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Peng Z; Liu F; Wang L; Zhou H; Paudel D; Tan L; Maku J; Gallo M; Wang J Sci Rep; 2017 Jan; 7():40066. PubMed ID: 28059169 [TBL] [Abstract][Full Text] [Related]
34. Metagenomic Analysis to Assess the Impact of Plant Growth-Promoting Rhizobacteria on Peanut ( Bigatton ED; Verdenelli RA; Haro RJ; Ayoub I; Barbero FM; Martín MP; Dubini LE; Jorrín Novo JV; Lucini EI; Castillejo MÁ J Agric Food Chem; 2024 Oct; 72(40):22385-22397. PubMed ID: 39324627 [TBL] [Abstract][Full Text] [Related]
35. Importance of glutathione in the nodulation process of peanut (Arachis hypogaea). Bianucci E; Tordable Mdel C; Fabra A; Castro S Physiol Plant; 2008 Oct; 134(2):342-7. PubMed ID: 18485058 [TBL] [Abstract][Full Text] [Related]
36. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Chen L; Shi H; Heng J; Wang D; Bian K Microbiol Res; 2019 Jan; 218():41-48. PubMed ID: 30454657 [TBL] [Abstract][Full Text] [Related]
37. Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot. Yan L; Wang Z; Song W; Fan P; Kang Y; Lei Y; Wan L; Huai D; Chen Y; Wang X; Sudini H; Liao B BMC Genomics; 2021 Apr; 22(1):276. PubMed ID: 33863285 [TBL] [Abstract][Full Text] [Related]
38. The biocontrol agent Bacillus sp. CHEP5 primes the defense response against Cercospora sojina. Tonelli ML; Fabra A World J Microbiol Biotechnol; 2014 Sep; 30(9):2503-9. PubMed ID: 24880246 [TBL] [Abstract][Full Text] [Related]
39. Response of peanut (Arachis hypogaea L.) plant to bio-fertilizer and plant residues in sandy soil. El-Sherbeny TMS; Mousa AM; Zhran MA Environ Geochem Health; 2023 Feb; 45(2):253-265. PubMed ID: 35697953 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens. Jinal NH; Amaresan N Arch Microbiol; 2020 Sep; 202(7):1785-1794. PubMed ID: 32382765 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]