BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28219946)

  • 1. Distinct intracellular Ca
    Suzuki M; Sato M; Koyama H; Hara Y; Hayashi K; Yasue N; Imamura H; Fujimori T; Nagai T; Campbell RE; Ueno N
    Development; 2017 Apr; 144(7):1307-1316. PubMed ID: 28219946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains.
    Grego-Bessa J; Hildebrand J; Anderson KV
    Development; 2015 Apr; 142(7):1305-14. PubMed ID: 25742799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.
    Inoue Y; Suzuki M; Watanabe T; Yasue N; Tateo I; Adachi T; Ueno N
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1733-1746. PubMed ID: 27193152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction.
    Sulistomo HW; Nemoto T; Yanagita T; Takeya R
    J Biol Chem; 2019 Feb; 294(8):2924-2934. PubMed ID: 30573686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folate receptor 1 is necessary for neural plate cell apical constriction during
    Balashova OA; Visina O; Borodinsky LN
    Development; 2017 Apr; 144(8):1518-1530. PubMed ID: 28255006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis.
    Morita H; Nandadasa S; Yamamoto TS; Terasaka-Iioka C; Wylie C; Ueno N
    Development; 2010 Apr; 137(8):1315-25. PubMed ID: 20332149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Autonomous Ca(2+) Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure.
    Christodoulou N; Skourides PA
    Cell Rep; 2015 Dec; 13(10):2189-202. PubMed ID: 26673322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scribble mutation disrupts convergent extension and apical constriction during mammalian neural tube closure.
    Lesko AC; Keller R; Chen P; Sutherland A
    Dev Biol; 2021 Oct; 478():59-75. PubMed ID: 34029538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure.
    Ossipova O; Kim K; Lake BB; Itoh K; Ioannou A; Sokol SY
    Nat Commun; 2014 May; 5():3734. PubMed ID: 24818582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure.
    Christodoulou N; Skourides PA
    Development; 2022 Jul; 149(13):. PubMed ID: 35662330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar cell polarity links axes of spatial dynamics in neural-tube closure.
    Nishimura T; Honda H; Takeichi M
    Cell; 2012 May; 149(5):1084-97. PubMed ID: 22632972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds.
    Kowalczyk I; Lee C; Schuster E; Hoeren J; Trivigno V; Riedel L; Görne J; Wallingford JB; Hammes A; Feistel K
    Development; 2021 Jan; 148(2):. PubMed ID: 33500317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.
    Prager A; Hagenlocher C; Ott T; Schambony A; Feistel K
    Dev Biol; 2017 Oct; 430(1):188-201. PubMed ID: 28778799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone morphogenetic proteins regulate hinge point formation during neural tube closure by dynamic modulation of apicobasal polarity.
    Eom DS; Amarnath S; Fogel JL; Agarwala S
    Birth Defects Res A Clin Mol Teratol; 2012 Oct; 94(10):804-16. PubMed ID: 22865775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPCR-independent activation of G proteins promotes apical cell constriction in vivo.
    Marivin A; Morozova V; Walawalkar I; Leyme A; Kretov DA; Cifuentes D; Dominguez I; Garcia-Marcos M
    J Cell Biol; 2019 May; 218(5):1743-1763. PubMed ID: 30948426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apical accumulation of Rho in the neural plate is important for neural plate cell shape change and neural tube formation.
    Kinoshita N; Sasai N; Misaki K; Yonemura S
    Mol Biol Cell; 2008 May; 19(5):2289-99. PubMed ID: 18337466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Claudins are essential for cell shape changes and convergent extension movements during neural tube closure.
    Baumholtz AI; Simard A; Nikolopoulou E; Oosenbrug M; Collins MM; Piontek A; Krause G; Piontek J; Greene NDE; Ryan AK
    Dev Biol; 2017 Aug; 428(1):25-38. PubMed ID: 28545845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lulu regulates Shroom-induced apical constriction during neural tube closure.
    Chu CW; Gerstenzang E; Ossipova O; Sokol SY
    PLoS One; 2013; 8(11):e81854. PubMed ID: 24282618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB.
    Rolo A; Skoglund P; Keller R
    Dev Biol; 2009 Mar; 327(2):327-38. PubMed ID: 19121300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells.
    Lee JY; Harland RM
    Dev Biol; 2007 Nov; 311(1):40-52. PubMed ID: 17868669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.