These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 2821996)
41. Activation and deactivation kinetics of Ca transport in inside-out erythrocyte membrane vesicles. Macintyre JD; Gunn RB Biochim Biophys Acta; 1981 Jun; 644(2):351-62. PubMed ID: 7260078 [TBL] [Abstract][Full Text] [Related]
42. Properties of (Mg2 + Ca2+)-ATPase of erythrocyte membranes prepared by different procedures: influence of Mg2+, Ca2+, ATP, and protein activator. Katz S; Roufogalis BD; Landman AD; Ho L J Supramol Struct; 1979; 10(2):215-25. PubMed ID: 156819 [TBL] [Abstract][Full Text] [Related]
43. Guanine-nucleotide and hormone regulation of polyphosphoinositide phospholipase C activity of rat liver plasma membranes. Bivalent-cation and phospholipid requirements. Taylor SJ; Exton JH Biochem J; 1987 Dec; 248(3):791-9. PubMed ID: 2829842 [TBL] [Abstract][Full Text] [Related]
44. Calmodulin regulation of Ca2+ transport in human erythrocytes. Larsen FL; Katz S; Roufogalis BD Biochem J; 1981 Nov; 200(2):185-91. PubMed ID: 6122443 [TBL] [Abstract][Full Text] [Related]
45. The human erythrocyte contains two forms of phosphatidylinositol-4-phosphate 5-kinase which are differentially active toward membranes. Bazenet CE; Ruano AR; Brockman JL; Anderson RA J Biol Chem; 1990 Oct; 265(29):18012-22. PubMed ID: 2170402 [TBL] [Abstract][Full Text] [Related]
46. Ca2+- and Mg2+-dependent association of phosphorylase kinase with human erythrocyte membranes. Kyriakidis SM; Sotiroudis TG; Evangelopoulos AE Biochim Biophys Acta; 1988 Dec; 972(3):347-52. PubMed ID: 3196766 [TBL] [Abstract][Full Text] [Related]
47. Changes in morphology and in polyphosphoinositide turnover of human erythrocytes after cholesterol depletion. Giraud F; M'Zali H; Chailley B; Mazet F Biochim Biophys Acta; 1984 Nov; 778(1):191-200. PubMed ID: 6093880 [TBL] [Abstract][Full Text] [Related]
48. Solitary calcium spike dependent on calmodulin and plasma membrane Ca2+ pump. Foder B; Scharff O Cell Calcium; 1992 Oct; 13(9):581-91. PubMed ID: 1334811 [TBL] [Abstract][Full Text] [Related]
49. Effects of secretagogues on [32P]phosphatidylinositol 4,5-bisphosphate metabolism in the exocrine pancreas. Putney JW; Burgess GM; Halenda SP; McKinney JS; Rubin RP Biochem J; 1983 May; 212(2):483-8. PubMed ID: 6309147 [TBL] [Abstract][Full Text] [Related]
50. Identification and metabolism of polyphosphoinositides in isolated islets of Langerhans. Laychock SG Biochem J; 1983 Oct; 216(1):101-6. PubMed ID: 6316930 [TBL] [Abstract][Full Text] [Related]
51. Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol. Vrolix M; Raeymaekers L; Wuytack F; Hofmann F; Casteels R Biochem J; 1988 Nov; 255(3):855-63. PubMed ID: 2850801 [TBL] [Abstract][Full Text] [Related]
52. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187. Campbell AK; Siddle K Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033 [TBL] [Abstract][Full Text] [Related]
53. Purification and characterization of human erythrocyte phosphatidylinositol 4-kinase. Phosphatidylinositol 4-kinase and phosphatidylinositol 3-monophosphate 4-kinase are distinct enzymes. Graziani A; Ling LE; Endemann G; Carpenter CL; Cantley LC Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):39-45. PubMed ID: 1318025 [TBL] [Abstract][Full Text] [Related]
54. Evidence of a role for phosphatidylinositol synthesis in human amnion cell proliferation. Ohno T; Imai A; Furui T; Matsunami K; Matsuda T; Tamaya T Biol Reprod; 1992 Nov; 47(5):730-5. PubMed ID: 1335765 [TBL] [Abstract][Full Text] [Related]
55. Purification and characterization of bovine brain type I phosphatidylinositol kinase. Morgan SJ; Smith AD; Parker PJ Eur J Biochem; 1990 Aug; 191(3):761-7. PubMed ID: 2167854 [TBL] [Abstract][Full Text] [Related]
56. Magnesium protects phosphatidylinositol-4,5-bisphosphate-mediated inactivation of casein kinase I in erythrocyte membrane. Chauhan VP; Singh SS; Chauhan A; Brockerhoff H Biochim Biophys Acta; 1993 Jun; 1177(3):318-21. PubMed ID: 8391852 [TBL] [Abstract][Full Text] [Related]
57. Calcium-induced changes in polyphosphoinositides and phosphatidate in normal erythrocytes, sickle cells and hereditary pyropoikilocytes. Ponnappa BC; Greenquist AC; Shohet SB Biochim Biophys Acta; 1980 Jun; 598(3):494-501. PubMed ID: 6248110 [No Abstract] [Full Text] [Related]
58. Interaction between cytoplasmic (Ca2+--Mg2+) ATPase activator and the erythrocyte membrane. Vincenzi FF; Farrance ML J Supramol Struct; 1977; 7(3-4):301-6. PubMed ID: 151172 [TBL] [Abstract][Full Text] [Related]
59. [The role of free calmodulin in the regulation of calcium-pump activity in erythrocytes]. Orlov SN; Pokudin NI; Boĭtsov VI; Sitozhevskiĭ AV; Gulak PV Biokhimiia; 1985 Jun; 50(6):883-90. PubMed ID: 4027284 [TBL] [Abstract][Full Text] [Related]
60. The role of inositol phospholipids in the association of band 4.1 with the human erythrocyte membrane. Gascard P; Pawelczyk T; Lowenstein JM; Cohen CM Eur J Biochem; 1993 Feb; 211(3):671-81. PubMed ID: 8382156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]