These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28219999)

  • 1. Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?
    Khurgin JB
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2090):. PubMed ID: 28219999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures.
    Mattox TM; Ye X; Manthiram K; Schuck PJ; Alivisatos AP; Urban JJ
    Adv Mater; 2015 Oct; 27(38):5830-7. PubMed ID: 26173628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Loss and Tunable Localized Mid-Infrared Plasmons in Nanocrystals of Highly Degenerate InN.
    Askari S; Mariotti D; Stehr JE; Benedikt J; Keraudy J; Helmersson U
    Nano Lett; 2018 Sep; 18(9):5681-5687. PubMed ID: 30137994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometric Engineering of Chalcogenide Semiconductor Alloys for Nanophotonic Applications.
    Piccinotti D; Gholipour B; Yao J; MacDonald KF; Hayden BE; Zheludev NI
    Adv Mater; 2019 Apr; 31(14):e1807083. PubMed ID: 30773719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-wavelength field enhancement in the mid-IR: photonics versus plasmonics versus phononics.
    Li T; Nagal V; Gracias DH; Khurgin JB
    Opt Lett; 2018 Sep; 43(18):4465-4468. PubMed ID: 30211891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion.
    Córdova-Castro RM; Casavola M; van Schilfgaarde M; Krasavin AV; Green MA; Richards D; Zayats AV
    ACS Nano; 2019 Jun; 13(6):6550-6560. PubMed ID: 31117375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.
    Ou JY; So JK; Adamo G; Sulaev A; Wang L; Zheludev NI
    Nat Commun; 2014 Oct; 5():5139. PubMed ID: 25295413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative plasmonic materials: beyond gold and silver.
    Naik GV; Shalaev VM; Boltasseva A
    Adv Mater; 2013 Jun; 25(24):3264-94. PubMed ID: 23674224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable, high-performance sodium-based plasmonic devices in the near infrared.
    Wang Y; Yu J; Mao YF; Chen J; Wang S; Chen HZ; Zhang Y; Wang SY; Chen X; Li T; Zhou L; Ma RM; Zhu S; Cai W; Zhu J
    Nature; 2020 May; 581(7809):401-405. PubMed ID: 32461649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metasurfaces for Sensing Applications: Gas, Bio and Chemical.
    Tabassum S; Nayemuzzaman SK; Kala M; Kumar Mishra A; Mishra SK
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metamaterial, plasmonic and nanophotonic devices.
    Monticone F; Alù A
    Rep Prog Phys; 2017 Mar; 80(3):036401. PubMed ID: 28166060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertically Aligned Ag
    Paldi RL; Wang X; Sun X; He Z; Qi Z; Zhang X; Wang H
    Nano Lett; 2020 May; 20(5):3778-3785. PubMed ID: 32330053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonics on the slope of enlightenment: the role of transition metal nitrides.
    Guler U; Kildishev AV; Boltasseva A; Shalaev VM
    Faraday Discuss; 2015; 178():71-86. PubMed ID: 25767999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light.
    Schönhardt A; Nau D; Bauer C; Christ A; Gräbeldinger H; Giessen H
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2090):. PubMed ID: 28219997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters.
    McCrindle IJ; Grant J; Drysdale TD; Cumming DR
    Opt Express; 2013 Aug; 21(16):19142-52. PubMed ID: 23938829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refractory materials and plasmonics based perfect absorbers.
    Yao Y; Zhou J; Liu Z; Liu X; Fu G; Liu G
    Nanotechnology; 2021 Jan; 32(13):. PubMed ID: 33302265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of infrared absorption in nanostructured metals by controlling Faraday inductance and electron path length.
    Han SE
    Opt Express; 2016 Feb; 24(3):2577-89. PubMed ID: 26906830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules.
    Le THH; Tanaka T
    ACS Nano; 2017 Oct; 11(10):9780-9788. PubMed ID: 28945355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.