These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28220053)

  • 1. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping.
    Mukhsar ; Wibawa GNA; Tenriawaru A; Usman I; Firihu MZ; Variani VI; Mansur ABF; Basori AH
    MethodsX; 2023; 10():101979. PubMed ID: 36619373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.
    Wang Z; Wang Q
    J Comput Sci Syst Biol; 2015; 9(1):1-5. PubMed ID: 27019569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the accuracy of simulation of radiation-reaction effects with implicit Runge-Kutta-Nyström methods.
    Elkina NV; Fedotov AM; Herzing C; Ruhl H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053315. PubMed ID: 25353922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation.
    Tremblay JC; Carrington T
    J Chem Phys; 2004 Dec; 121(23):11535-41. PubMed ID: 15634118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Inductive Linearization for simulation and estimation with an application to the Michaelis-Menten model.
    Sharif S; Hasegawa C; Duffull SB
    J Pharmacokinet Pharmacodyn; 2022 Aug; 49(4):445-453. PubMed ID: 35788853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Solution of Reaction-Diffusion Equations by Using the Quadrature and Singular Convolution Methods.
    Ragb O; Salah M; Matbuly MS; Ersoy H; Civalek O
    Arab J Sci Eng; 2023; 48(3):4045-4065. PubMed ID: 36311480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units.
    Garcia-Molla VM; Liberos A; Vidal A; Guillem MS; Millet J; Gonzalez A; Martinez-Zaldivar FJ; Climent AM
    Comput Biol Med; 2014 Jan; 44():15-26. PubMed ID: 24377685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic integration of the reaction path using diagonally implicit Runge-Kutta methods.
    Burger SK; Yang W
    J Chem Phys; 2006 Dec; 125(24):244108. PubMed ID: 17199341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIST: a user-friendly metabolic simulator.
    Ehlde M; Zacchi G
    Comput Appl Biosci; 1995 Apr; 11(2):201-7. PubMed ID: 7620994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.
    Wu H; Xue H; Kumar A
    Biometrics; 2012 Jun; 68(2):344-52. PubMed ID: 22376200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of a high-order Taylor expansion solution to the chemical rate equation for the simulation of complex biochemical systems.
    Fischer TH; White GC
    Comput Appl Biosci; 1990 Jul; 6(3):173-7. PubMed ID: 2207741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical methods for solving one-dimensional cochlear models in the time domain.
    Diependaal RJ; Duifhuis H; Hoogstraten HW; Viergever MA
    J Acoust Soc Am; 1987 Nov; 82(5):1655-66. PubMed ID: 3693707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of malaria transmission dynamics in humans with mobility and control states.
    Adegbite G; Edeki S; Isewon I; Emmanuel J; Dokunmu T; Rotimi S; Oyelade J; Adebiyi E
    Infect Dis Model; 2023 Dec; 8(4):1015-1031. PubMed ID: 37649792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems.
    Simos TE; Aguiar JV
    Comput Chem; 2001 May; 25(3):275-81. PubMed ID: 11339410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2001 Aug; 172(2):55-72. PubMed ID: 11520499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new soft tissue deformation model based on Runge-Kutta: Application in lung.
    Zhang X; Zhang W; Sun W; Song A
    Comput Biol Med; 2022 Sep; 148():105811. PubMed ID: 35834968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.