These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 28220209)

  • 1. S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion.
    Giannattasio M; Branzei D
    Cell Mol Life Sci; 2017 Jul; 74(13):2361-2380. PubMed ID: 28220209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases.
    De Piccoli G; Katou Y; Itoh T; Nakato R; Shirahige K; Labib K
    Mol Cell; 2012 Mar; 45(5):696-704. PubMed ID: 22325992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intra-S phase checkpoint directly regulates replication elongation to preserve the integrity of stalled replisomes.
    Liu Y; Wang L; Xu X; Yuan Y; Zhang B; Li Z; Xie Y; Yan R; Zheng Z; Ji J; Murray JM; Carr AM; Kong D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(24):. PubMed ID: 34108240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability.
    Dungrawala H; Rose KL; Bhat KP; Mohni KN; Glick GG; Couch FB; Cortez D
    Mol Cell; 2015 Sep; 59(6):998-1010. PubMed ID: 26365379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Intra-S Checkpoint Responses to DNA Damage.
    Iyer DR; Rhind N
    Genes (Basel); 2017 Feb; 8(2):. PubMed ID: 28218681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations.
    Cobb JA; Schleker T; Rojas V; Bjergbaek L; Tercero JA; Gasser SM
    Genes Dev; 2005 Dec; 19(24):3055-69. PubMed ID: 16357221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing.
    Lucca C; Vanoli F; Cotta-Ramusino C; Pellicioli A; Liberi G; Haber J; Foiani M
    Oncogene; 2004 Feb; 23(6):1206-13. PubMed ID: 14647447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The S-phase checkpoint: targeting the replication fork.
    Segurado M; Tercero JA
    Biol Cell; 2009 Aug; 101(11):617-27. PubMed ID: 19686094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of replication fork protection: a safeguard for genome stability.
    Errico A; Costanzo V
    Crit Rev Biochem Mol Biol; 2012; 47(3):222-35. PubMed ID: 22324461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple roles of replication forks in S phase checkpoints: sensors, effectors and targets.
    Pasero P; Shimada K; Duncker BP
    Cell Cycle; 2003; 2(6):568-72. PubMed ID: 14512770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing.
    Hu J; Sun L; Shen F; Chen Y; Hua Y; Liu Y; Zhang M; Hu Y; Wang Q; Xu W; Sun F; Ji J; Murray JM; Carr AM; Kong D
    Cell; 2012 Jun; 149(6):1221-32. PubMed ID: 22682245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATR/Mec1: coordinating fork stability and repair.
    Friedel AM; Pike BL; Gasser SM
    Curr Opin Cell Biol; 2009 Apr; 21(2):237-44. PubMed ID: 19230642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint.
    Tercero JA; Diffley JF
    Nature; 2001 Aug; 412(6846):553-7. PubMed ID: 11484057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ATR pathway: fine-tuning the fork.
    Paulsen RD; Cimprich KA
    DNA Repair (Amst); 2007 Jul; 6(7):953-66. PubMed ID: 17531546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses.
    Martinho RG; Lindsay HD; Flaggs G; DeMaggio AJ; Hoekstra MF; Carr AM; Bentley NJ
    EMBO J; 1998 Dec; 17(24):7239-49. PubMed ID: 9857181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fork and the kinase: a DNA replication tale from a CHK1 perspective.
    González Besteiro MA; Gottifredi V
    Mutat Res Rev Mutat Res; 2015; 763():168-80. PubMed ID: 25795119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork.
    Calzada A; Hodgson B; Kanemaki M; Bueno A; Labib K
    Genes Dev; 2005 Aug; 19(16):1905-19. PubMed ID: 16103218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery from the DNA Replication Checkpoint.
    Chaudhury I; Koepp DM
    Genes (Basel); 2016 Oct; 7(11):. PubMed ID: 27801838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cohesin Ubiquitylation and Mobilization Facilitate Stalled Replication Fork Dynamics.
    Frattini C; Villa-Hernández S; Pellicanò G; Jossen R; Katou Y; Shirahige K; Bermejo R
    Mol Cell; 2017 Nov; 68(4):758-772.e4. PubMed ID: 29129641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression.
    Sheu YJ; Kinney JB; Stillman B
    Genome Res; 2016 Mar; 26(3):315-30. PubMed ID: 26733669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.