These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28220401)

  • 1. Numerical model for healthy and injured ankle ligaments.
    Forestiero A; Carniel EL; Fontanella CG; Natali AN
    Australas Phys Eng Sci Med; 2017 Jun; 40(2):289-295. PubMed ID: 28220401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the biomechanical behaviour of hindfoot ligaments.
    Forestiero A; Carniel EL; Venturato C; Natali AN
    Proc Inst Mech Eng H; 2013 Jun; 227(6):683-92. PubMed ID: 23636750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical behaviour of ankle ligaments: constitutive formulation and numerical modelling.
    Forestiero A; Carniel EL; Natali AN
    Comput Methods Biomech Biomed Engin; 2014; 17(4):395-404. PubMed ID: 22616815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation.
    Wei F; Hunley SC; Powell JW; Haut RC
    Ann Biomed Eng; 2011 Feb; 39(2):756-65. PubMed ID: 21170679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the mechanical behaviour of the plantar soft tissue during gait cycle: Experimental and numerical activities.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2015 Oct; 229(10):713-20. PubMed ID: 26405096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints.
    Venturato C; Pavan PG; Forestiero A; Carniel EL; Natali AN
    Acta Bioeng Biomech; 2014; 16(2):57-65. PubMed ID: 25088586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Searching for the "sweet spot": the foot rotation and parallel engagement of ankle ligaments in maximizing injury tolerance.
    Nie B; Forman JL; Mait AR; Donlon JP; Panzer MB; Kent RW
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1937-1945. PubMed ID: 28634682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the in situ mechanical behavior of ankle ligaments.
    Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW
    J Mech Behav Biomed Mater; 2017 Jan; 65():502-512. PubMed ID: 27665085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The accuracy of three-dimensional magnetic resonance imaging in the diagnosis of ruptures of the lateral ligaments of the ankle.
    Verhaven EF; Shahabpour M; Handelberg FW; Vaes PH; Opdecam PJ
    Am J Sports Med; 1991; 19(6):583-7. PubMed ID: 1781494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-based modeling of in situ ankle ligaments with consideration of progressive failure.
    Nie B; Forman JL; Panzer MB; Mait AR; Donlon JP; Kent RW
    J Biomech; 2017 Aug; 61():102-110. PubMed ID: 28757236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Trauma of the ligaments and tendons. Examination technique and detection in MRI].
    Breitenseher M; Trattnig S; Kukla C; Gäbler C; Helbich T; Haller J; Imhof H
    Radiologe; 1995 Jul; 35(7):456-62. PubMed ID: 7676023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion.
    Nie B; Panzer MB; Mane A; Mait AR; Donlon JP; Forman JL; Kent RW
    Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1254-65. PubMed ID: 26712301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A visco-hyperelastic constitutive model for human spine ligaments.
    Jiang Y; Wang Y; Peng X
    Cell Biochem Biophys; 2015 Mar; 71(2):1147-56. PubMed ID: 25347987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankle laxity: stress investigation under MRI control.
    Seebauer CJ; Bail HJ; Rump JC; Hamm B; Walter T; Teichgräber UK
    AJR Am J Roentgenol; 2013 Sep; 201(3):496-504. PubMed ID: 23971441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Fluid Dynamics in Distributing Ankle Stresses in Anatomic and Injured States.
    Hamid KS; Scott AT; Nwachukwu BU; Danelson KA
    Foot Ankle Int; 2016 Dec; 37(12):1343-1349. PubMed ID: 27530984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A real-time computational model for estimating kinematics of ankle ligaments.
    Zhang M; Davies TC; Zhang Y; Xie SQ
    Comput Methods Biomech Biomed Engin; 2016; 19(8):835-44. PubMed ID: 26252861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.