These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 28220440)

  • 1. Quantum probability ranking principle for ligand-based virtual screening.
    Al-Dabbagh MM; Salim N; Himmat M; Ahmed A; Saeed F
    J Comput Aided Mol Des; 2017 Apr; 31(4):365-378. PubMed ID: 28220440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Quantum-Based Similarity Method in Virtual Screening.
    Al-Dabbagh MM; Salim N; Himmat M; Ahmed A; Saeed F
    Molecules; 2015 Oct; 20(10):18107-27. PubMed ID: 26445039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual screening data fusion using both structure- and ligand-based methods.
    Svensson F; Karlén A; Sköld C
    J Chem Inf Model; 2012 Jan; 52(1):225-32. PubMed ID: 22148635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations.
    Polishchuk P; Kutlushina A; Bashirova D; Mokshyna O; Madzhidov T
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31757043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Based Virtual Screening of Commercially Available Compound Libraries.
    Kireev D
    Methods Mol Biol; 2016; 1439():65-76. PubMed ID: 27316988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mRAISE: an alternative algorithmic approach to ligand-based virtual screening.
    von Behren MM; Bietz S; Nittinger E; Rarey M
    J Comput Aided Mol Des; 2016 Aug; 30(8):583-94. PubMed ID: 27565795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Structure Similarity Search for Ligand-based Virtual Screening: Methods and Computational Resources.
    Yan X; Liao C; Liu Z; Hagler AT; Gu Q; Xu J
    Curr Drug Targets; 2016; 17(14):1580-1585. PubMed ID: 26521773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated virtual screening approach for VEGFR-2 inhibitors.
    Zhang Y; Yang S; Jiao Y; Liu H; Yuan H; Lu S; Ran T; Yao S; Ke Z; Xu J; Xiong X; Chen Y; Lu T
    J Chem Inf Model; 2013 Dec; 53(12):3163-77. PubMed ID: 24266594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.
    Wei NN; Hamza A
    J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Quantum-Inspired Method for Three-Dimensional Ligand-Based Virtual Screening.
    Hernandez M; Liang Gan G; Linvill K; Dukatz C; Feng J; Bhisetti G
    J Chem Inf Model; 2019 Oct; 59(10):4475-4485. PubMed ID: 31625746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience.
    Bragina ME; Daina A; Perez MAS; Michielin O; Zoete V
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shaping a screening file for maximal lead discovery efficiency and effectiveness: elimination of molecular redundancy.
    Bakken GA; Bell AS; Boehm M; Everett JR; Gonzales R; Hepworth D; Klug-McLeod JL; Lanfear J; Loesel J; Mathias J; Wood TP
    J Chem Inf Model; 2012 Nov; 52(11):2937-49. PubMed ID: 23062111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function and structure-based screening of compounds, peptides and proteins to identify drug candidates.
    Malik V; Dhanjal JK; Kumari A; Radhakrishnan N; Singh K; Sundar D
    Methods; 2017 Dec; 131():10-21. PubMed ID: 28843611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to Prepare a Compound Collection Prior to Virtual Screening.
    Bologa CG; Ursu O; Oprea TI
    Methods Mol Biol; 2019; 1939():119-138. PubMed ID: 30848459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity.
    Luo M; Wang XS; Tropsha A
    Mol Inform; 2016 Jan; 35(1):36-41. PubMed ID: 27491652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of Pharmacophore Matching, 2D Similarity Search, and In Vitro Biological Assays in the Selection of Potential 5-HT6 Antagonists from Large Commercial Repositories.
    Dobi K; Flachner B; Pukáncsik M; Máthé E; Bognár M; Szaszkó M; Magyar C; Hajdú I; Lőrincz Z; Simon I; Fülöp F; Cseh S; Dormán G
    Chem Biol Drug Des; 2015 Oct; 86(4):864-80. PubMed ID: 25823681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ranking chemical structures for drug discovery: a new machine learning approach.
    Agarwal S; Dugar D; Sengupta S
    J Chem Inf Model; 2010 May; 50(5):716-31. PubMed ID: 20387860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LINGO-DL: a text-based approach for molecular similarity searching.
    Abdo A; Pupin M
    J Comput Aided Mol Des; 2021 May; 35(5):657-665. PubMed ID: 33797669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.