These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
538 related articles for article (PubMed ID: 28220522)
1. An Efficient Synthesis of bi-Aryl Pyrimidine Heterocycles: Potential New Drug Candidates to Treat Alzheimer's Disease. Rehman TU; Khan IU; Ashraf M; Tarazi H; Riaz S; Yar M Arch Pharm (Weinheim); 2017 Apr; 350(3-4):. PubMed ID: 28220522 [TBL] [Abstract][Full Text] [Related]
2. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies. Mutahir S; Jończyk J; Bajda M; Khan IU; Khan MA; Ullah N; Ashraf M; Qurat-ul-Ain ; Riaz S; Hussain S; Yar M Bioorg Chem; 2016 Feb; 64():13-20. PubMed ID: 26595185 [TBL] [Abstract][Full Text] [Related]
3. Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer's disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase. Riaz S; Khan IU; Bajda M; Ashraf M; Qurat-Ul-Ain ; Shaukat A; Rehman TU; Mutahir S; Hussain S; Mustafa G; Yar M Bioorg Chem; 2015 Dec; 63():64-71. PubMed ID: 26451651 [TBL] [Abstract][Full Text] [Related]
4. Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer's disease. Tasso B; Catto M; Nicolotti O; Novelli F; Tonelli M; Giangreco I; Pisani L; Sparatore A; Boido V; Carotti A; Sparatore F Eur J Med Chem; 2011 Jun; 46(6):2170-84. PubMed ID: 21459491 [TBL] [Abstract][Full Text] [Related]
5. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives. Basiri A; Murugaiyah V; Osman H; Kumar RS; Kia Y; Ali MA Bioorg Med Chem; 2013 Jun; 21(11):3022-31. PubMed ID: 23602518 [TBL] [Abstract][Full Text] [Related]
7. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer's action: Design, synthesis, crystal structure and in-vitro biological evaluation. Manzoor S; Prajapati SK; Majumdar S; Raza MK; Gabr MT; Kumar S; Pal K; Rashid H; Kumar S; Krishnamurthy S; Hoda N Eur J Med Chem; 2021 Apr; 215():113224. PubMed ID: 33582578 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, molecular docking studies, and biological evaluation of novel alkyl bis(4-amino-5-cyanopyrimidine) derivatives. Boualia I; Derabli C; Boulcina R; Bensouici C; Yildirim M; Birinci Yildirim A; Mokrani EH; Debache A Arch Pharm (Weinheim); 2019 Nov; 352(11):e1900027. PubMed ID: 31448454 [TBL] [Abstract][Full Text] [Related]
9. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Khan I; Ibrar A; Zaib S; Ahmad S; Furtmann N; Hameed S; Simpson J; Bajorath J; Iqbal J Bioorg Med Chem; 2014 Nov; 22(21):6163-73. PubMed ID: 25257911 [TBL] [Abstract][Full Text] [Related]
10. Design, Synthesis, and Evaluation of Acetylcholinesterase and Butyrylcholinesterase Dual-Target Inhibitors against Alzheimer's Diseases. Guo Y; Yang H; Huang Z; Tian S; Li Q; Du C; Chen T; Liu Y; Sun H; Liu Z Molecules; 2020 Jan; 25(3):. PubMed ID: 31979317 [TBL] [Abstract][Full Text] [Related]
11. Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. Taha M; Rahim F; Uddin N; Khan IU; Iqbal N; Anouar EH; Salahuddin M; Farooq RK; Gollapalli M; Khan KM; Zafar A Int J Biol Macromol; 2021 Oct; 188():1025-1036. PubMed ID: 34390751 [TBL] [Abstract][Full Text] [Related]
12. Potential of aryl-urea-benzofuranylthiazoles hybrids as multitasking agents in Alzheimer's disease. Kurt BZ; Gazioglu I; Basile L; Sonmez F; Ginex T; Kucukislamoglu M; Guccione S Eur J Med Chem; 2015 Sep; 102():80-92. PubMed ID: 26244990 [TBL] [Abstract][Full Text] [Related]
14. Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines. Basiri A; Murugaiyah V; Osman H; Kumar RS; Kia Y; Hooda A; Parsons RB Bioorg Med Chem; 2014 Jan; 22(2):906-16. PubMed ID: 24369842 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of novel 5-(aroylhydrazinocarbonyl)escitalopram as cholinesterase inhibitors. Nisa MU; Munawar MA; Iqbal A; Ahmed A; Ashraf M; Gardener QA; Khan MA Eur J Med Chem; 2017 Sep; 138():396-406. PubMed ID: 28688279 [TBL] [Abstract][Full Text] [Related]
16. New piperidine-hydrazone derivatives: Synthesis, biological evaluations and molecular docking studies as AChE and BChE inhibitors. Karaman N; Sıcak Y; Taşkın-Tok T; Öztürk M; Karaküçük-İyidoğan A; Dikmen M; Koçyiğit-Kaymakçıoğlu B; Oruç-Emre EE Eur J Med Chem; 2016 Nov; 124():270-283. PubMed ID: 27592396 [TBL] [Abstract][Full Text] [Related]
17. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site. Hadda TB; Talhi O; Silva ASM; Senol FS; Orhan IE; Rauf A; Mabkhot YN; Bachari K; Warad I; Farghaly TA; Althagafi II; Mubarak MS Mini Rev Med Chem; 2018; 18(8):711-716. PubMed ID: 28714400 [TBL] [Abstract][Full Text] [Related]