These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. Ye J; Liu W; Cai J; Chen S; Zhao X; Zhou H; Qi L J Am Chem Soc; 2011 Feb; 133(4):933-40. PubMed ID: 21142068 [TBL] [Abstract][Full Text] [Related]
43. Mesocrystals in Biominerals and Colloidal Arrays. Bergström L; Sturm née Rosseeva EV; Salazar-Alvarez G; Cölfen H Acc Chem Res; 2015 May; 48(5):1391-402. PubMed ID: 25938915 [TBL] [Abstract][Full Text] [Related]
44. Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts. Gong M; Fu G; Chen Y; Tang Y; Lu T ACS Appl Mater Interfaces; 2014 May; 6(10):7301-8. PubMed ID: 24801265 [TBL] [Abstract][Full Text] [Related]
45. Platinum multicubes prepared by ni(2+) -mediated shape evolution exhibit high electrocatalytic activity for oxygen reduction. Ma L; Wang C; Xia BY; Mao K; He J; Wu X; Xiong Y; Lou XW Angew Chem Int Ed Engl; 2015 May; 54(19):5666-71. PubMed ID: 25756931 [TBL] [Abstract][Full Text] [Related]
46. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Lim B; Jiang M; Camargo PH; Cho EC; Tao J; Lu X; Zhu Y; Xia Y Science; 2009 Jun; 324(5932):1302-5. PubMed ID: 19443738 [TBL] [Abstract][Full Text] [Related]
47. Electrodeposition of multilayered bimetallic nanoclusters of ruthenium and platinum via surface-limited redox-replacement reactions for electrocatalytic applications. Mkwizu TS; Mathe MK; Cukrowski I Langmuir; 2010 Jan; 26(1):570-80. PubMed ID: 19795847 [TBL] [Abstract][Full Text] [Related]
48. Recent Advances in Amino-Based Molecules Assisted Control of Noble-Metal Electrocatalysts. Li M; Li Z; Fu G; Tang Y Small; 2021 Apr; 17(17):e2007179. PubMed ID: 33709573 [TBL] [Abstract][Full Text] [Related]
49. The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology. Long NV; Chien ND; Hayakawa T; Hirata H; Lakshminarayana G; Nogami M Nanotechnology; 2010 Jan; 21(3):035605. PubMed ID: 19966396 [TBL] [Abstract][Full Text] [Related]
50. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. Huang X; Zhao Z; Fan J; Tan Y; Zheng N J Am Chem Soc; 2011 Apr; 133(13):4718-21. PubMed ID: 21405136 [TBL] [Abstract][Full Text] [Related]
51. The size-controlled synthesis of uniform Mn2O3 octahedra assembled from nanoparticles and their catalytic properties. Liu L; Liang H; Yang H; Wei J; Yang Y Nanotechnology; 2011 Jan; 22(1):015603. PubMed ID: 21135457 [TBL] [Abstract][Full Text] [Related]
52. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones. Kim J; Hilal H; Haddadnezhad M; Lee J; Park W; Park W; Lee JW; Jung I; Park S ACS Nano; 2022 Jun; 16(6):9214-9221. PubMed ID: 35446559 [TBL] [Abstract][Full Text] [Related]
53. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Mazloum-Ardakani M; Hosseinzadeh L; Taleat Z Biosens Bioelectron; 2015 Dec; 74():30-6. PubMed ID: 26094037 [TBL] [Abstract][Full Text] [Related]
54. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. Wu Y; Cai S; Wang D; He W; Li Y J Am Chem Soc; 2012 May; 134(21):8975-81. PubMed ID: 22519877 [TBL] [Abstract][Full Text] [Related]
55. Synthesis of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation. Lee YW; Ko AR; Han SB; Kim HS; Park KW Phys Chem Chem Phys; 2011 Apr; 13(13):5569-72. PubMed ID: 21327266 [TBL] [Abstract][Full Text] [Related]
56. Composition-controlled synthesis of carbon-supported Pt-Co alloy nanoparticles and the origin of their ORR activity enhancement. Zhao Y; Liu J; Zhao Y; Wang F Phys Chem Chem Phys; 2014 Sep; 16(36):19298-306. PubMed ID: 25098392 [TBL] [Abstract][Full Text] [Related]
57. Polyhedral Palladium-Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction. Fu GT; Liu C; Zhang Q; Chen Y; Tang YW Sci Rep; 2015 Sep; 5():13703. PubMed ID: 26329555 [TBL] [Abstract][Full Text] [Related]
58. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related]
59. Self-Assembled Dendritic Pt Nanostructure with High-Index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction. Jang Y; Choi KH; Chung DY; Lee JE; Jung N; Sung YE ChemSusChem; 2017 Aug; 10(15):3063-3068. PubMed ID: 28657204 [TBL] [Abstract][Full Text] [Related]
60. Shape-controlled synthesis of Pt nanocrystals: the role of metal carbonyls. Kang Y; Pyo JB; Ye X; Diaz RE; Gordon TR; Stach EA; Murray CB ACS Nano; 2013 Jan; 7(1):645-53. PubMed ID: 23211025 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]