BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28221044)

  • 21. Cationic osteogenic peptide P15-CSP coatings promote 3-D osteogenesis in poly(epsilon-caprolactone) scaffolds of distinct pore size.
    Li X; Ghavidel Mehr N; Guzmán-Morales J; Favis BD; De Crescenzo G; Yakandawala N; Hoemann CD
    J Biomed Mater Res A; 2017 Aug; 105(8):2171-2181. PubMed ID: 28380658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rabies virus production in high vero cell density cultures on macroporous microcarriers.
    Yokomizo AY; Antoniazzi MM; Galdino PL; Azambuja N; Jorge SA; Pereira CA
    Biotechnol Bioeng; 2004 Mar; 85(5):506-15. PubMed ID: 14760691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation.
    Choong C; Yuan S; Thian ES; Oyane A; Triffitt J
    J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Optimization of attachment conditions for rabbit mesenchymal stem cells in cytodex 3 microcarrier culture systems].
    Jiang D; Hu J; Zhou Y; Tan W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):884-8. PubMed ID: 17899766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of porous gelatin-chitosan microcarriers and modeling of process parameters via the RSM method.
    Karimian S A M; Mashayekhan S; Baniasadi H
    Int J Biol Macromol; 2016 Jul; 88():288-95. PubMed ID: 27037056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds.
    Bean AC; Tuan RS
    Biomed Mater; 2015 Jan; 10(1):015018. PubMed ID: 25634427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Green and Tunable Animal Protein-Free Microcarriers for Cell Expansion.
    Somville E; Kumar AA; Guicheux J; Halgand B; Demoustier-Champagne S; des Rieux A; Jonas AM; Glinel K
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50303-50314. PubMed ID: 33119274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells.
    V S S; P V M
    Colloids Surf B Biointerfaces; 2018 Mar; 163():107-118. PubMed ID: 29287231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering.
    Nguyen TH; Bao TQ; Park I; Lee BT
    J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formulation of spray-dried phenytoin loaded poly(epsilon-caprolactone) microcarrier intended for brain delivery to treat epilepsy.
    Li Z; Li Q; Simon S; Guven N; Borges K; Youan BB
    J Pharm Sci; 2007 May; 96(5):1018-30. PubMed ID: 17455322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of Biodegradable Poly(caprolactone) Spherical-Microcarriers for Arterial Embolization.
    Pan CT; Wang SY; Yen CK; Zeng SW; Kumur A; Liang SS; Liu ZH; Wen ZH; Mohamed MG; Kaushik AC; Chien ST; Shiue YL; Kuo SW
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5162-5174. PubMed ID: 32126717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic bioactive microcarriers: co-delivery of growth factors and stem cells for bone tissue engineering.
    Perez RA; El-Fiqi A; Park JH; Kim TH; Kim JH; Kim HW
    Acta Biomater; 2014 Jan; 10(1):520-30. PubMed ID: 24121192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone-loaded chitosan microspheres.
    Omidvar N; Ganji F; Eslaminejad MB
    J Biomed Mater Res A; 2016 Jul; 104(7):1657-67. PubMed ID: 26916786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of methotrexate-loaded, large, highly-porous PLLA microspheres by a high-voltage electrostatic antisolvent process.
    Chen AZ; Yang YM; Wang SB; Wang GY; Liu YG; Sun QQ
    J Mater Sci Mater Med; 2013 Aug; 24(8):1917-25. PubMed ID: 23661255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineered mu-bimodal poly(epsilon-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation.
    Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Di Maio E; Iannace S; Netti PA
    Acta Biomater; 2009 May; 5(4):1082-93. PubMed ID: 19010746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.