These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28221377)

  • 1. The nonmonotonous shift of quantum plasmon resonance and plasmon-enhanced photocatalytic activity of gold nanoparticles.
    Ding SJ; Yang DJ; Li JL; Pan GM; Ma L; Lin YJ; Wang JH; Zhou L; Feng M; Xu H; Gao S; Wang QQ
    Nanoscale; 2017 Mar; 9(9):3188-3195. PubMed ID: 28221377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of the signal amplification potential of colloidal gold nanoparticles on resonance wavelength in surface plasmon resonance-based detection.
    Fu E; Ramsey SA; Yager P
    Anal Chim Acta; 2007 Sep; 599(1):118-23. PubMed ID: 17765071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region.
    Kanehara M; Koike H; Yoshinaga T; Teranishi T
    J Am Chem Soc; 2009 Dec; 131(49):17736-7. PubMed ID: 19921844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Size Dependence of Quantum Plasmon of Charged Gold Nanoparticles.
    Ma S; Yang DJ; Ding SJ; Liu J; Wang W; Wu ZY; Liu XD; Zhou L; Wang QQ
    Phys Rev Lett; 2021 Apr; 126(17):173902. PubMed ID: 33988417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles.
    Sun Y; Gray SK; Peng S
    Phys Chem Chem Phys; 2011 Jul; 13(25):11814-26. PubMed ID: 21611673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.
    Sohrabnezhad Sh; Zanjanchi MA; Razavi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():129-35. PubMed ID: 24769384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films.
    Rai VN; Srivastava AK; Mukherjee C; Deb SK
    Appl Opt; 2012 May; 51(14):2606-15. PubMed ID: 22614480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Wavelength Enhanced Photoelectrochemical Cells from Surface Plasmon Resonance.
    Yang H; Wang ZH; Zheng YY; He LQ; Zhan C; Lu X; Tian ZQ; Fang PP; Tong Y
    J Am Chem Soc; 2016 Dec; 138(50):16204-16207. PubMed ID: 27935697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance.
    Hong X; Hall EA
    Analyst; 2012 Oct; 137(20):4712-9. PubMed ID: 22950078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible Modulation of Surface Plasmons in Gold Nanoparticles Enabled by Surface Redox Chemistry.
    Li Z; Foley JJ; Peng S; Sun CJ; Ren Y; Wiederrecht GP; Gray SK; Sun Y
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8948-51. PubMed ID: 26094976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of charge transfer at the TiO
    Han R; Song W; Wang X; Mao Z; Han XX; Zhao B
    Phys Chem Chem Phys; 2018 Feb; 20(8):5666-5673. PubMed ID: 29423468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Up-conversion luminescence of gold nanospheres when excited at nonsurface plasmon resonance wavelength by a continuous wave laser.
    Neupane B; Zhao L; Wang G
    Nano Lett; 2013 Sep; 13(9):4087-92. PubMed ID: 23914976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region.
    Lien J; Peck KA; Su M; Guo T
    J Colloid Interface Sci; 2016 Oct; 479():173-181. PubMed ID: 27388131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optical biosensing platform for proteinase activity using gold nanoparticles.
    Chuang YC; Li JC; Chen SH; Liu TY; Kuo CH; Huang WT; Lin CS
    Biomaterials; 2010 Aug; 31(23):6087-95. PubMed ID: 20471084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved sensitivity of wavelength-modulated surface plasmon resonance biosensor using gold nanorods.
    Hao P; Wu Y; Li F
    Appl Opt; 2011 Oct; 50(28):5555-8. PubMed ID: 22016225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods.
    Tsutsui Y; Hayakawa T; Kawamura G; Nogami M
    Nanotechnology; 2011 Jul; 22(27):275203. PubMed ID: 21597141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.