These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2822161)

  • 1. Spin label study of erythrocyte deformability. Ca2+-induced loss of deformability and the effects of stomatocytogenic reagents on the deformability loss in human erythrocytes in shear flow.
    Noji S; Taniguchi S; Kon H
    Biophys J; 1987 Aug; 52(2):221-7. PubMed ID: 2822161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-label studies of erythrocyte deformability. IV. Relation of electron spin resonance spectral change with deformation and orientation of erythrocytes in shear flow.
    Noji S; Kon H; Taniguchi S
    Biophys J; 1984 Sep; 46(3):349-55. PubMed ID: 6091803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of calcium and A23187 on deformability and volume of human red blood cells.
    Dodson RA; Hinds TR; Vincenzi FF
    Blood Cells; 1987; 12(3):555-64. PubMed ID: 3115342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of calcium ions and ionophore A23187 on microrheological characteristics of erythrocytes by new model ektacytometry.
    Chunyi W; Yanjun Z; Weibo K
    Clin Hemorheol Microcirc; 2001; 24(1):19-23. PubMed ID: 11345230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin label study of erythrocyte deformability. III. Further characterizations of electron spin resonance spectral change in shear flow.
    Kon K; Noji S; Kon H
    Blood Cells; 1983; 9(3):427-41. PubMed ID: 6326897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes of erythrocyte deformability induced by calcium accumulation and calmodulin inhibitors].
    Murakami J
    Nihon Seirigaku Zasshi; 1987; 49(4):119-33. PubMed ID: 3625566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The copper-induced deformability loss and echinocyte formation in human erythrocytes: an electron paramagnetic resonance study.
    Ito T; Kon H
    Toxicol Appl Pharmacol; 1987 Apr; 88(2):242-54. PubMed ID: 3031848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium- and lead-activated morphological changes in human erythrocytes: a spin label study of the cytoplasm.
    Eriksson LE; Beving H
    Arch Biochem Biophys; 1993 Jun; 303(2):296-301. PubMed ID: 8390219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of loss of deformability in human erythrocytes due to Heinz body formation: a flow EPR study.
    Fukushima Y; Kon H
    Toxicol Appl Pharmacol; 1990 Feb; 102(2):205-18. PubMed ID: 2154065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the presence of hardened erythrocytes on deformation-orientation characteristics of normal erythrocytes in shear flow studied by the spin label method.
    Kon K; O'Bryan ER; Kon H
    Biorheology; 1985; 22(2):105-17. PubMed ID: 2985145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability.
    Barodka V; Mohanty JG; Mustafa AK; Santhanam L; Nyhan A; Bhunia AK; Sikka G; Nyhan D; Berkowitz DE; Rifkind JM
    Transfusion; 2014 Feb; 54(2):434-44. PubMed ID: 23781865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid A decreases human erythrocytes deformability by increasing intracellular Ca(2+): effects of verapamil, staurosporine and the rho-kinase inhibitor Y-27632.
    Ruef P; Ehrhard M; Frommhold D; Koch L; Fritzsching B; Poeschl J
    Clin Hemorheol Microcirc; 2011; 49(1-4):315-22. PubMed ID: 22214703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformability of red blood cells in eczema.
    el-Saaiee L; Meky N
    J Med; 1986; 17(5-6):273-83. PubMed ID: 3473169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Familial phosphofructokinase deficiency is associated with a disturbed calcium homeostasis in erythrocytes.
    Ronquist G; Rudolphi O; Engström I; Waldenström A
    J Intern Med; 2001 Jan; 249(1):85-95. PubMed ID: 11168788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flow EPR study of deformation and orientation characteristics of erythrocyte ghosts: a possible effect of an altered state of cytoskeletal network.
    Ito T; Kon H
    J Membr Biol; 1988; 101(1):57-65. PubMed ID: 2835487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Assessment of hemorheological deformability of human red cells exposed to tert-butyl hydroperoxide, verapamil and ascorbate by ektacytometer].
    Kim DH; Kim YK; Won DI; Shin S; Suh JS
    Korean J Lab Med; 2008 Oct; 28(5):325-31. PubMed ID: 18971612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separate mechanisms of deformability loss in ATP-depleted and Ca-loaded erythrocytes.
    Clark MR; Mohandas N; Feo C; Jacobs MS; Shohet SB
    J Clin Invest; 1981 Feb; 67(2):531-9. PubMed ID: 6780609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors that limit whole cell deformability in erythrocytes after calcium loading and ATP depletion.
    Mohandas N; Clark MR; Feo C; Jacobs MS; Shohet SB
    Prog Clin Biol Res; 1981; 55():423-37. PubMed ID: 6794036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flow EPR study of deformation and orientation characteristics of erythrocyte ghosts: effects of lysing and resealing conditions.
    Fukushima Y; Kon H
    J Membr Biol; 1988 Sep; 104(3):265-73. PubMed ID: 3210224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin label study of erythrocyte deformability I. Electron spin resonance spectral change under shear flow.
    Noji S; Inoue F; Kon H
    Blood Cells; 1981; 7(2):401-15. PubMed ID: 6271312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.