These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28221783)
1. Cultivation of the Marine Macroalgae Chaetomorpha linum in Municipal Wastewater for Nutrient Recovery and Biomass Production. Ge S; Champagne P Environ Sci Technol; 2017 Mar; 51(6):3558-3566. PubMed ID: 28221783 [TBL] [Abstract][Full Text] [Related]
2. Integration of Marine Macroalgae ( Li X; Deng Y; Li X; Ma X; Wang J; Li J Archaea; 2020; 2020():8848120. PubMed ID: 32694930 [TBL] [Abstract][Full Text] [Related]
3. Improved lipid productivity of Scenedesmus obliquus with high nutrient removal efficiency by mixotrophic cultivation in actual municipal wastewater. Liu J; Yin J; Ge Y; Han H; Liu M; Gao F Chemosphere; 2021 Dec; 285():131475. PubMed ID: 34273702 [TBL] [Abstract][Full Text] [Related]
4. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. Guo Z; Liu Y; Guo H; Yan S; Mu J J Environ Sci (China); 2013 Dec; 25 Suppl 1():S85-8. PubMed ID: 25078847 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga Scenedesmus sp. AMDD grown in continuous chemostats. Dickinson KE; Bjornsson WJ; Garrison LL; Whitney CG; Park KC; Banskota AH; McGinn PJ J Appl Microbiol; 2015 Jan; 118(1):75-83. PubMed ID: 25363842 [TBL] [Abstract][Full Text] [Related]
6. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Qin L; Wang Z; Sun Y; Shu Q; Feng P; Zhu L; Xu J; Yuan Z Environ Sci Pollut Res Int; 2016 May; 23(9):8379-87. PubMed ID: 26780059 [TBL] [Abstract][Full Text] [Related]
7. Cultivation of Nannochloropsis salina in municipal wastewater or digester centrate. Dong B; Ho N; Ogden KL; Arnold RG Ecotoxicol Environ Saf; 2014 May; 103():45-53. PubMed ID: 24565931 [TBL] [Abstract][Full Text] [Related]
8. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
9. Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. Leong WH; Azella Zaine SN; Ho YC; Uemura Y; Lam MK; Khoo KS; Kiatkittipong W; Cheng CK; Show PL; Lim JW J Environ Manage; 2019 Nov; 249():109384. PubMed ID: 31419674 [TBL] [Abstract][Full Text] [Related]
10. Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE). Vadiveloo A; Foster L; Kwambai C; Bahri PA; Moheimani NR Sci Total Environ; 2021 Jun; 775():145853. PubMed ID: 33621869 [TBL] [Abstract][Full Text] [Related]
11. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Zhu L; Wang Z; Shu Q; Takala J; Hiltunen E; Feng P; Yuan Z Water Res; 2013 Sep; 47(13):4294-302. PubMed ID: 23764580 [TBL] [Abstract][Full Text] [Related]
12. Resourceful treatment of cane sugar industry wastewater by Tribonema minus towards the production of valuable biomass. Wang F; Chen J; Zhang C; Gao B Bioresour Technol; 2020 Nov; 316():123902. PubMed ID: 32738560 [TBL] [Abstract][Full Text] [Related]
13. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. Renuka N; Ratha SK; Kader F; Rawat I; Bux F J Environ Manage; 2021 Nov; 297():113257. PubMed ID: 34303940 [TBL] [Abstract][Full Text] [Related]
14. Solids Residence Time Impacts Carbon Dynamics and Bioenergy Feedstock Potential in Phototrophic Wastewater Treatment Systems. Bradley IM; Li Y; Guest JS Environ Sci Technol; 2021 Sep; 55(18):12574-12584. PubMed ID: 34478624 [TBL] [Abstract][Full Text] [Related]
15. Microalgae biomass from swine wastewater and its conversion to bioenergy. Cheng DL; Ngo HH; Guo WS; Chang SW; Nguyen DD; Kumar SM Bioresour Technol; 2019 Mar; 275():109-122. PubMed ID: 30579101 [TBL] [Abstract][Full Text] [Related]
16. An evolved native microalgal consortium-snow system for the bioremediation of biogas and centrate wastewater: Start-up, optimization and stabilization. Qiu S; Yu Z; Hu Y; Chen Z; Guo J; Xia W; Ge S Water Res; 2021 May; 196():117038. PubMed ID: 33751972 [TBL] [Abstract][Full Text] [Related]
17. Carbon dissipation from surgical cotton production wastewater using macroalgae, microalgae, and activated sludge microbes. Babu AR; Sharma NK; Manickam M Environ Sci Pollut Res Int; 2022 Dec; 29(57):86192-86201. PubMed ID: 34746986 [TBL] [Abstract][Full Text] [Related]
18. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol--comparison of five pretreatment technologies. Schultz-Jensen N; Thygesen A; Leipold F; Thomsen ST; Roslander C; Lilholt H; Bjerre AB Bioresour Technol; 2013 Jul; 140():36-42. PubMed ID: 23672937 [TBL] [Abstract][Full Text] [Related]
19. Increased microalgae growth and nutrient removal using balanced N:P ratio in wastewater. Lee SH; Ahn CY; Jo BH; Lee SA; Park JY; An KG; Oh HM J Microbiol Biotechnol; 2013 Jan; 23(1):92-8. PubMed ID: 23314374 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Monoraphidium contortum for the tertiary treatment of dairy industry wastewater and biomass production with nitrogen supplementation. Choi N; Nunes IVO; Ohira GOM; Carvalho JCM; Matsudo MC Bioprocess Biosyst Eng; 2023 Feb; 46(2):265-271. PubMed ID: 36520280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]