These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 28222154)
1. A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken. Li S; Li D; Zhao X; Wang Y; Yin H; Zhou L; Zhong C; Zhu Q PLoS One; 2017; 12(2):e0172211. PubMed ID: 28222154 [TBL] [Abstract][Full Text] [Related]
2. Polymorphisms in the Egl nine homolog 3 (EGLN3) and Peroxisome proliferator activated receptor-alpha (PPARĪ±) genes and their correlation with hypoxia adaptation in Tibetan chickens. Zhong C; Li S; Li J; Li F; Ran M; Qiu L; Li D; Zhu Q; Wang Y; Yin H; Shu G; Yang C; Zhao X PLoS One; 2018; 13(3):e0194156. PubMed ID: 29543898 [TBL] [Abstract][Full Text] [Related]
3. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective. Zhao X; Wu N; Zhu Q; Gaur U; Gu T; Li D Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3280-8. PubMed ID: 25693693 [TBL] [Abstract][Full Text] [Related]
4. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments. Zhang Q; Gou W; Wang X; Zhang Y; Ma J; Zhang H; Zhang Y; Zhang H Genome Biol Evol; 2016 Feb; 8(3):765-76. PubMed ID: 26907498 [TBL] [Abstract][Full Text] [Related]
5. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Gou X; Wang Z; Li N; Qiu F; Xu Z; Yan D; Yang S; Jia J; Kong X; Wei Z; Lu S; Lian L; Wu C; Wang X; Li G; Ma T; Jiang Q; Zhao X; Yang J; Liu B; Wei D; Li H; Yang J; Yan Y; Zhao G; Dong X; Li M; Deng W; Leng J; Wei C; Wang C; Mao H; Zhang H; Ding G; Li Y Genome Res; 2014 Aug; 24(8):1308-15. PubMed ID: 24721644 [TBL] [Abstract][Full Text] [Related]
6. [Association between diversity of hypoxia at different altitude and the polymorphism of EPAS1 gene]. Ke JK; Yao YF; Liu SY; Shi L; Yu L; Lin KQ; Tao YF; Shi L; Yi W; Huang XQ; Chu JY Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2011 Oct; 28(5):583-8. PubMed ID: 21983741 [TBL] [Abstract][Full Text] [Related]
7. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Peng Y; Cui C; He Y; Ouzhuluobu ; Zhang H; Yang D; Zhang Q; Bianbazhuoma ; Yang L; He Y; Xiang K; Zhang X; Bhandari S; Shi P; Yangla ; Dejiquzong ; Baimakangzhuo ; Duojizhuoma ; Pan Y; Cirenyangji ; Baimayangji ; Gonggalanzi ; Bai C; Bianba ; Basang ; Ciwangsangbu ; Xu S; Chen H; Liu S; Wu T; Qi X; Su B Mol Biol Evol; 2017 Apr; 34(4):818-830. PubMed ID: 28096303 [TBL] [Abstract][Full Text] [Related]
8. EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. Buroker NE; Ning XH; Zhou ZN; Li K; Cen WJ; Wu XF; Zhu WZ; Scott CR; Chen SH Blood Cells Mol Dis; 2012 Aug; 49(2):67-73. PubMed ID: 22595196 [TBL] [Abstract][Full Text] [Related]
9. Genetic and immune changes in Tibetan high-altitude populations contribute to biological adaptation to hypoxia. Bai J; Li L; Li Y; Zhang L Environ Health Prev Med; 2022; 27():39. PubMed ID: 36244759 [TBL] [Abstract][Full Text] [Related]
10. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. Hanaoka M; Droma Y; Basnyat B; Ito M; Kobayashi N; Katsuyama Y; Kubo K; Ota M PLoS One; 2012; 7(12):e50566. PubMed ID: 23227185 [TBL] [Abstract][Full Text] [Related]
11. Whole genome re-sequencing identifies unique adaption of single nucleotide polymorphism, insertion/deletion and structure variation related to hypoxia in Tibetan chickens. Zhang Z; Qiu M; Du H; Li Q; Yu C; Gan W; Peng H; Xia B; Xiong X; Song X; Yang L; Hu C; Chen J; Yang C; Jiang X Gene Expr Patterns; 2021 Jun; 40():119181. PubMed ID: 34004346 [TBL] [Abstract][Full Text] [Related]
12. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. Schweizer RM; Velotta JP; Ivy CM; Jones MR; Muir SM; Bradburd GS; Storz JF; Scott GR; Cheviron ZA PLoS Genet; 2019 Nov; 15(11):e1008420. PubMed ID: 31697676 [TBL] [Abstract][Full Text] [Related]
13. Association between MT-CO3 haplotypes and high-altitude adaptation in Tibetan chicken. Sun J; Zhong H; Chen SY; Yao YG; Liu YP Gene; 2013 Oct; 529(1):131-7. PubMed ID: 23850731 [TBL] [Abstract][Full Text] [Related]
14. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue. Li M; Zhao C Sci China C Life Sci; 2009 Mar; 52(3):284-95. PubMed ID: 19294354 [TBL] [Abstract][Full Text] [Related]
15. Genomic Analyses Reveal Potential Independent Adaptation to High Altitude in Tibetan Chickens. Wang MS; Li Y; Peng MS; Zhong L; Wang ZJ; Li QY; Tu XL; Dong Y; Zhu CL; Wang L; Yang MM; Wu SF; Miao YW; Liu JP; Irwin DM; Wang W; Wu DD; Zhang YP Mol Biol Evol; 2015 Jul; 32(7):1880-9. PubMed ID: 25788450 [TBL] [Abstract][Full Text] [Related]
16. The specific expression pattern of globin mRNAs in Tibetan chicken during late embryonic stage under hypoxia. Liu C; Zhang LF; Li N Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr; 164(4):638-44. PubMed ID: 23000881 [TBL] [Abstract][Full Text] [Related]
17. Sequencing of 50 human exomes reveals adaptation to high altitude. Yi X; Liang Y; Huerta-Sanchez E; Jin X; Cuo ZX; Pool JE; Xu X; Jiang H; Vinckenbosch N; Korneliussen TS; Zheng H; Liu T; He W; Li K; Luo R; Nie X; Wu H; Zhao M; Cao H; Zou J; Shan Y; Li S; Yang Q; Asan ; Ni P; Tian G; Xu J; Liu X; Jiang T; Wu R; Zhou G; Tang M; Qin J; Wang T; Feng S; Li G; Huasang ; Luosang J; Wang W; Chen F; Wang Y; Zheng X; Li Z; Bianba Z; Yang G; Wang X; Tang S; Gao G; Chen Y; Luo Z; Gusang L; Cao Z; Zhang Q; Ouyang W; Ren X; Liang H; Zheng H; Huang Y; Li J; Bolund L; Kristiansen K; Li Y; Zhang Y; Zhang X; Li R; Li S; Yang H; Nielsen R; Wang J; Wang J Science; 2010 Jul; 329(5987):75-8. PubMed ID: 20595611 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide association analysis reveals novel loci for hypoxia adaptability in Tibetan chicken. Jiang SY; Xu HY; Shen ZN; Zhao CJ; Wu C Anim Genet; 2018 Aug; 49(4):337-339. PubMed ID: 29774577 [TBL] [Abstract][Full Text] [Related]
19. Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus). Song S; Yao N; Yang M; Liu X; Dong K; Zhao Q; Pu Y; He X; Guan W; Yang N; Ma Y; Jiang L BMC Genomics; 2016 Feb; 17():122. PubMed ID: 26892324 [TBL] [Abstract][Full Text] [Related]
20. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Peng Y; Yang Z; Zhang H; Cui C; Qi X; Luo X; Tao X; Wu T; Ouzhuluobu ; Basang ; Ciwangsangbu ; Danzengduojie ; Chen H; Shi H; Su B Mol Biol Evol; 2011 Feb; 28(2):1075-81. PubMed ID: 21030426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]