BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 28222336)

  • 61. Only SF3B1 mutation involving K700E independently predicts overall survival in myelodysplastic syndromes.
    Kanagal-Shamanna R; Montalban-Bravo G; Sasaki K; Darbaniyan F; Jabbour E; Bueso-Ramos C; Wei Y; Chien K; Kadia T; Ravandi F; Borthakur G; Soltysiak KA; Routbort M; Patel K; Pierce S; Medeiros LJ; Kantarjian HM; Garcia-Manero G
    Cancer; 2021 Oct; 127(19):3552-3565. PubMed ID: 34161603
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spliceosome mutations in hematopoietic malignancies.
    Hahn CN; Scott HS
    Nat Genet; 2011 Dec; 44(1):9-10. PubMed ID: 22200771
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SF3B1 Mutation but Not Ring Sideroblasts Identifies a Specific Group of Myelodysplastic Syndrome-Refractory Cytopenia With Multilineage Dysplasia.
    Xiong B; Xue M; Yu Y; Wu S; Zuo X
    Clin Lymphoma Myeloma Leuk; 2020 May; 20(5):329-339.e3. PubMed ID: 32037286
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation.
    Obeng EA; Chappell RJ; Seiler M; Chen MC; Campagna DR; Schmidt PJ; Schneider RK; Lord AM; Wang L; Gambe RG; McConkey ME; Ali AM; Raza A; Yu L; Buonamici S; Smith PG; Mullally A; Wu CJ; Fleming MD; Ebert BL
    Cancer Cell; 2016 Sep; 30(3):404-417. PubMed ID: 27622333
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Revisiting diagnostic criteria for myelodysplastic/myeloproliferative neoplasms with ring sideroblasts and thrombocytosis: Borderline cases without anemia exist.
    Li P; Shahmarvand N; Lynch D; Gotlib JR; Merker JD; Zehnder JL; George TI; Ohgami RS
    Int J Lab Hematol; 2019 Jun; 41(3):345-352. PubMed ID: 30811101
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Replication stress signaling is a therapeutic target in myelodysplastic syndromes with splicing factor mutations.
    Flach J; Jann JC; Knaflic A; Riabov V; Streuer A; Altrock E; Xu Q; Schmitt N; Obländer J; Nowak V; Danner J; Mehralivand A; Hofmann F; Palme I; Jawhar A; Wuchter P; Metzgeroth G; Nolte F; Hofmann WK; Nowak D
    Haematologica; 2021 Nov; 106(11):2906-2917. PubMed ID: 33054116
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modeling human RNA spliceosome mutations in the mouse: not all mice were created equal.
    Xu JJ; Smeets MF; Tan SY; Wall M; Purton LE; Walkley CR
    Exp Hematol; 2019 Feb; 70():10-23. PubMed ID: 30408513
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Targeting the EIF2AK1 Signaling Pathway Rescues Red Blood Cell Production in SF3B1-Mutant Myelodysplastic Syndromes With Ringed Sideroblasts.
    Adema V; Ma F; Kanagal-Shamanna R; Thongon N; Montalban-Bravo G; Yang H; Peslak SA; Wang F; Acha P; Sole F; Lockyer P; Cassari M; Maciejewski JP; Visconte V; Gañán-Gómez I; Song Y; Bueso-Ramos C; Pellegrini M; Tan TM; Bejar R; Carew JS; Halene S; Santini V; Al-Atrash G; Clise-Dwyer K; Garcia-Manero G; Blobel GA; Colla S
    Blood Cancer Discov; 2022 Nov; 3(6):554-567. PubMed ID: 35926182
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The molecular pathogenesis of the myelodysplastic syndromes.
    Pellagatti A; Boultwood J
    Eur J Haematol; 2015 Jul; 95(1):3-15. PubMed ID: 25645650
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Frequency of SF3B1 Mutations in Thai Patients with Myelodysplastic Syndrome.
    Rujirachaivej P; Siriboonpiputtana T; Rerkamnuaychoke B; Magmuang S; Chareonsirisuthigul T; Boonsakan P; Petvises S; Sirirat T; Niparuck P; Chuncharunee S
    Asian Pac J Cancer Prev; 2018 Jul; 19(7):1825-1831. PubMed ID: 30049194
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms.
    Malcovati L; Papaemmanuil E; Bowen DT; Boultwood J; Della Porta MG; Pascutto C; Travaglino E; Groves MJ; Godfrey AL; Ambaglio I; Gallì A; Da Vià MC; Conte S; Tauro S; Keenan N; Hyslop A; Hinton J; Mudie LJ; Wainscoat JS; Futreal PA; Stratton MR; Campbell PJ; Hellström-Lindberg E; Cazzola M;
    Blood; 2011 Dec; 118(24):6239-46. PubMed ID: 21998214
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Altered splicing and cytoplasmic levels of tRNA synthetases in SF3B1-mutant myelodysplastic syndromes as a therapeutic vulnerability.
    Liberante FG; Lappin K; Barros EM; Vohhodina J; Grebien F; Savage KI; Mills KI
    Sci Rep; 2019 Feb; 9(1):2678. PubMed ID: 30804405
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Development of a high-resolution melting analysis for the detection of the SF3B1 mutations.
    Yang J; Qian J; Lin J; Yang XF; Qian W; Chen Q; Yao DM; Wang CZ; Chen XX; Xiao GF; Ma YJ
    Genet Test Mol Biomarkers; 2013 Apr; 17(4):342-7. PubMed ID: 23390883
    [TBL] [Abstract][Full Text] [Related]  

  • 74. MDS-associated SF3B1 mutations enhance proinflammatory gene expression in patient blast cells.
    Pollyea DA; Kim HM; Stevens BM; Lee FF; Harris C; Hedin BR; Knapp JR; O'Connor BP; Jordan CT; Pietras EM; Tan AC; Alper S
    J Leukoc Biol; 2021 Jul; 110(1):197-205. PubMed ID: 33155727
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mutational Spectrum of Fanconi Anemia Associated Myeloid Neoplasms.
    Chao MM; Thomay K; Goehring G; Wlodarski M; Pastor V; Schlegelberger B; Schindler D; Kratz CP; Niemeyer C
    Klin Padiatr; 2017 Nov; 229(6):329-334. PubMed ID: 29132164
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in SF3B1 mutated refractory anaemia with ring sideroblasts.
    Conte S; Katayama S; Vesterlund L; Karimi M; Dimitriou M; Jansson M; Mortera-Blanco T; Unneberg P; Papaemmanuil E; Sander B; Skoog T; Campbell P; Walfridsson J; Kere J; Hellström-Lindberg E
    Br J Haematol; 2015 Nov; 171(4):478-90. PubMed ID: 26255870
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.
    Dolatshad H; Pellagatti A; Fernandez-Mercado M; Yip BH; Malcovati L; Attwood M; Przychodzen B; Sahgal N; Kanapin AA; Lockstone H; Scifo L; Vandenberghe P; Papaemmanuil E; Smith CW; Campbell PJ; Ogawa S; Maciejewski JP; Cazzola M; Savage KI; Boultwood J
    Leukemia; 2015 May; 29(5):1092-103. PubMed ID: 25428262
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes.
    Damm F; Kosmider O; Gelsi-Boyer V; Renneville A; Carbuccia N; Hidalgo-Curtis C; Della Valle V; Couronné L; Scourzic L; Chesnais V; Guerci-Bresler A; Slama B; Beyne-Rauzy O; Schmidt-Tanguy A; Stamatoullas-Bastard A; Dreyfus F; Prébet T; de Botton S; Vey N; Morgan MA; Cross NC; Preudhomme C; Birnbaum D; Bernard OA; Fontenay M;
    Blood; 2012 Apr; 119(14):3211-8. PubMed ID: 22343920
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast.
    Carrocci TJ; Zoerner DM; Paulson JC; Hoskins AA
    Nucleic Acids Res; 2017 May; 45(8):4837-4852. PubMed ID: 28062854
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Impact of allogeneic hematopoietic cell transplant in patients with myeloid neoplasms carrying spliceosomal mutations.
    Hamilton BK; Visconte V; Jia X; Tabarroki A; Makishima H; Hasrouni E; Abounader D; Kalaycio M; Sekeres MA; Sobecks R; Duong Liu H; Bolwell B; Maciejewski JP; Copelan E; Tiu RV
    Am J Hematol; 2016 Jun; 91(4):406-9. PubMed ID: 26799334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.