These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 28223024)

  • 1. Construction of a library of structurally diverse ribonucleopeptides with catalytic groups.
    Tamura T; Nakano S; Nakata E; Morii T
    Bioorg Med Chem; 2017 Mar; 25(6):1881-1888. PubMed ID: 28223024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribonucleopeptides: functional RNA-peptide complexes.
    Hagihara M; Hasegawa T; Sato S; Yoshikawa S; Ohkubo K; Morii T
    Biopolymers; 2004; 76(1):66-8. PubMed ID: 14997476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepwise molding of a highly selective ribonucleopeptide receptor.
    Sato S; Fukuda M; Hagihara M; Tanabe Y; Ohkubo K; Morii T
    J Am Chem Soc; 2005 Jan; 127(1):30-1. PubMed ID: 15631433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes.
    Hagihara M; Fukuda M; Hasegawa T; Morii T
    J Am Chem Soc; 2006 Oct; 128(39):12932-40. PubMed ID: 17002390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise functionalization of ribonucleopeptides: optimization of the response of fluorescent ribonucleopeptide sensors for ATP.
    Hasegawa T; Hagihara M; Fukuda M; Morii T
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1277-81. PubMed ID: 18066768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Diversity-Oriented Library of Fluorophore-Modified Receptors Constructed from a Chemical Library of Synthetic Fluorophores.
    Nakano S; Tamura T; Das RK; Nakata E; Chang YT; Morii T
    Chembiochem; 2017 Nov; 18(22):2212-2216. PubMed ID: 28879678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling a substrate-binding geometry of ribonucleopeptide receptor.
    Fukuda M; Nakano S; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):421-2. PubMed ID: 18029766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a ribonucleopeptide biosensor.
    Hagihara M; Hirata A; Ohkubo K; Morii T
    Nucleic Acids Res Suppl; 2003; (3):193-4. PubMed ID: 14510446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural aspects for the recognition of ATP by ribonucleopeptide receptors.
    Nakano S; Mashima T; Matsugami A; Inoue M; Katahira M; Morii T
    J Am Chem Soc; 2011 Mar; 133(12):4567-79. PubMed ID: 21370890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of sensing ribonucleopeptides for small ligands.
    Hagihara M; Hasegawa T; Tanabe Y; Sato S; Yoshikawa S; Ohkubo K; Morii T
    Nucleic Acids Symp Ser (Oxf); 2004; (48):33-4. PubMed ID: 17150464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a stable functional ribonucleopeptide complex by the covalent linking method.
    Fukuda M; Nakano S; Tainaka K; Fujieda N; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):195-6. PubMed ID: 18776320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro selection of ATP-binding receptors using a ribonucleopeptide complex.
    Morii T; Hagihara M; Sato S; Makino K
    J Am Chem Soc; 2002 May; 124(17):4617-22. PubMed ID: 11971709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise functionalization of ribonucleopeptide complexes to receptors and sensors.
    Fukuda M; Tanabe Y; Morii T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):355-6. PubMed ID: 17150780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of small molecules by a ribonucleopeptide.
    Hagihara M; Morii T; Makino K
    Nucleic Acids Res Suppl; 2001; (1):7-8. PubMed ID: 12836237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Context-dependent fluorescence detection of a phosphorylated tyrosine residue by a ribonucleopeptide.
    Hasegawa T; Hagihara M; Fukuda M; Nakano S; Fujieda N; Morii T
    J Am Chem Soc; 2008 Jul; 130(27):8804-12. PubMed ID: 18597435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of ratiometric fluorescent sensors by ribonucleopeptides.
    Annoni C; Nakata E; Tamura T; Liew FF; Nakano S; Gelmi ML; Morii T
    Org Biomol Chem; 2012 Nov; 10(44):8767-9. PubMed ID: 23069733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonucleopeptides recognize the phosphotyrosine residue.
    Hasegawa T; Yoshikawa S; Morii T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):79-80. PubMed ID: 17150642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective recognition of a tetra-amino-acid motif containing phosphorylated tyrosine residue by ribonucleopeptide.
    Nakano S; Hasegawa T; Fukuda M; Fujieda N; Tainaka K; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):199-200. PubMed ID: 18776322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP selection in a random peptide library consisting of prebiotic amino acids.
    Kang SK; Chen BX; Tian T; Jia XS; Chu XY; Liu R; Dong PF; Yang QY; Zhang HY
    Biochem Biophys Res Commun; 2015 Oct; 466(3):400-5. PubMed ID: 26365351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality.
    Vaish NK; Larralde R; Fraley AW; Szostak JW; McLaughlin LW
    Biochemistry; 2003 Jul; 42(29):8842-51. PubMed ID: 12873145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.