These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28223047)
21. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins. Verdes A; Anand P; Gorson J; Jannetti S; Kelly P; Leffler A; Simpson D; Ramrattan G; Holford M Toxins (Basel); 2016 Apr; 8(4):117. PubMed ID: 27104567 [TBL] [Abstract][Full Text] [Related]
22. A sleep-inducing peptide from the venom of the Indian cone snail Conus araneosus. Franklin JB; Rajesh RP Toxicon; 2015 Sep; 103():39-47. PubMed ID: 26100663 [TBL] [Abstract][Full Text] [Related]
23. Conus peptides--a rich pharmaceutical treasure. Wang CZ; Chi CW Acta Biochim Biophys Sin (Shanghai); 2004 Nov; 36(11):713-23. PubMed ID: 15514844 [TBL] [Abstract][Full Text] [Related]
24. Diversity of A-conotoxins of three worm-hunting cone snails (Conus brunneus, Conus nux, and Conus princeps) from the Mexican Pacific coast. Morales-González D; Flores-Martínez E; Zamora-Bustillos R; Rivera-Reyes R; Michel-Morfín JE; Landa-Jaime V; Falcón A; Aguilar MB Peptides; 2015 Jun; 68():25-32. PubMed ID: 25703301 [TBL] [Abstract][Full Text] [Related]
25. Direct cDNA cloning of novel conopeptide precursors of the O-superfamily. Kauferstein S; Melaun C; Mebs D Peptides; 2005 Mar; 26(3):361-7. PubMed ID: 15652641 [TBL] [Abstract][Full Text] [Related]
26. Novel alpha-conotoxins identified by gene sequencing from cone snails native to Hainan, and their sequence diversity. Luo S; Zhangsun D; Zhang B; Quan Y; Wu Y J Pept Sci; 2006 Nov; 12(11):693-704. PubMed ID: 16981242 [TBL] [Abstract][Full Text] [Related]
27. Conopeptide characterization and classifications: an analysis using ConoServer. Kaas Q; Westermann JC; Craik DJ Toxicon; 2010 Jul; 55(8):1491-509. PubMed ID: 20211197 [TBL] [Abstract][Full Text] [Related]
28. Discovery of a new subclass of α-conotoxins in the venom of Conus australis. Lebbe EK; Peigneur S; Maiti M; Mille BG; Devi P; Ravichandran S; Lescrinier E; Waelkens E; D'Souza L; Herdewijn P; Tytgat J Toxicon; 2014 Dec; 91():145-54. PubMed ID: 25194747 [TBL] [Abstract][Full Text] [Related]
29. Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: an important component of conotoxin discovery. Jakubowski JA; Kelley WP; Sweedler JV Toxicon; 2006 May; 47(6):688-99. PubMed ID: 16574181 [TBL] [Abstract][Full Text] [Related]
30. Peptidomic and transcriptomic profiling of four distinct spider venoms. Oldrati V; Koua D; Allard PM; Hulo N; Arrell M; Nentwig W; Lisacek F; Wolfender JL; Kuhn-Nentwig L; Stöcklin R PLoS One; 2017; 12(3):e0172966. PubMed ID: 28306751 [TBL] [Abstract][Full Text] [Related]
31. Molecular diversification of peptide toxins from the tarantula Haplopelma hainanum (Ornithoctonus hainana) venom based on transcriptomic, peptidomic, and genomic analyses. Tang X; Zhang Y; Hu W; Xu D; Tao H; Yang X; Li Y; Jiang L; Liang S J Proteome Res; 2010 May; 9(5):2550-64. PubMed ID: 20192277 [TBL] [Abstract][Full Text] [Related]
32. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. Lavergne V; Harliwong I; Jones A; Miller D; Taft RJ; Alewood PF Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3782-91. PubMed ID: 26150494 [TBL] [Abstract][Full Text] [Related]
33. Deciphering the Molecular Diversity of an Ant Venom Peptidome through a Venomics Approach. Touchard A; Téné N; Song PCT; Lefranc B; Leprince J; Treilhou M; Bonnafé E J Proteome Res; 2018 Oct; 17(10):3503-3516. PubMed ID: 30149710 [TBL] [Abstract][Full Text] [Related]
34. Determining sequences and post-translational modifications of novel conotoxins in Conus victoriae using cDNA sequencing and mass spectrometry. Jakubowski JA; Keays DA; Kelley WP; Sandall DW; Bingham JP; Livett BG; Gayler KR; Sweedler JV J Mass Spectrom; 2004 May; 39(5):548-57. PubMed ID: 15170751 [TBL] [Abstract][Full Text] [Related]
35. Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Dutertre S; Biass D; Stöcklin R; Favreau P Toxicon; 2010 Jul; 55(8):1453-62. PubMed ID: 20206197 [TBL] [Abstract][Full Text] [Related]
37. Cone snail analogs of the pituitary hormones oxytocin/vasopressin and their carrier protein neurophysin. Proteomic and transcriptomic identification of conopressins and conophysins. Kumar S; Vijayasarathy M; Venkatesha MA; Sunita P; Balaram P Biochim Biophys Acta Proteins Proteom; 2020 May; 1868(5):140391. PubMed ID: 32058072 [TBL] [Abstract][Full Text] [Related]
38. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Dutertre S; Jin AH; Vetter I; Hamilton B; Sunagar K; Lavergne V; Dutertre V; Fry BG; Antunes A; Venter DJ; Alewood PF; Lewis RJ Nat Commun; 2014 Mar; 5():3521. PubMed ID: 24662800 [TBL] [Abstract][Full Text] [Related]
39. From Marine Venoms to Drugs: Efficiently Supported by a Combination of Transcriptomics and Proteomics. Xie B; Huang Y; Baumann K; Fry BG; Shi Q Mar Drugs; 2017 Mar; 15(4):. PubMed ID: 28358320 [TBL] [Abstract][Full Text] [Related]
40. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails. Gorson J; Ramrattan G; Verdes A; Wright EM; Kantor Y; Rajaram Srinivasan R; Musunuri R; Packer D; Albano G; Qiu WG; Holford M Genome Biol Evol; 2015 May; 7(6):1761-78. PubMed ID: 26025559 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]