These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 28223171)
1. How tumour-induced vascular changes alter angiogenesis: Insights from a computational model. Stéphanou A; Lesart AC; Deverchère J; Juhem A; Popov A; Estève F J Theor Biol; 2017 Apr; 419():211-226. PubMed ID: 28223171 [TBL] [Abstract][Full Text] [Related]
2. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. Cai Y; Xu S; Wu J; Long Q J Theor Biol; 2011 Jun; 279(1):90-101. PubMed ID: 21392511 [TBL] [Abstract][Full Text] [Related]
3. Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. Welter M; Bartha K; Rieger H J Theor Biol; 2009 Aug; 259(3):405-22. PubMed ID: 19371750 [TBL] [Abstract][Full Text] [Related]
4. On the importance of the submicrovascular network in a computational model of tumour growth. Lesart AC; van der Sanden B; Hamard L; Estève F; Stéphanou A Microvasc Res; 2012 Sep; 84(2):188-204. PubMed ID: 22705361 [TBL] [Abstract][Full Text] [Related]
5. Angiogenesis and vascular remodelling in normal and cancerous tissues. Owen MR; Alarcón T; Maini PK; Byrne HM J Math Biol; 2009 Apr; 58(4-5):689-721. PubMed ID: 18941752 [TBL] [Abstract][Full Text] [Related]
6. Oxygen Distributions-Evaluation of Computational Methods, Using a Stochastic Model for Large Tumour Vasculature, to Elucidate the Importance of Considering a Complete Vascular Network. Lagerlöf JH; Bernhardt P PLoS One; 2016; 11(11):e0166251. PubMed ID: 27861529 [TBL] [Abstract][Full Text] [Related]
7. Multi-scale mathematical modelling of tumour growth and microenvironments in anti-angiogenic therapy. Cai Y; Zhang J; Li Z Biomed Eng Online; 2016 Dec; 15(Suppl 2):155. PubMed ID: 28155728 [TBL] [Abstract][Full Text] [Related]
8. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Hendriksen EM; Span PN; Schuuring J; Peters JP; Sweep FC; van der Kogel AJ; Bussink J Microvasc Res; 2009 Mar; 77(2):96-103. PubMed ID: 19118564 [TBL] [Abstract][Full Text] [Related]
9. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. McDougall SR; Anderson AR; Chaplain MA; Sherratt JA Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417 [TBL] [Abstract][Full Text] [Related]
10. An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics. Adhikarla V; Jeraj R Phys Med Biol; 2016 May; 61(10):3885-902. PubMed ID: 27117345 [TBL] [Abstract][Full Text] [Related]
11. Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Daşu A; Toma-Daşu I; Karlsson M Phys Med Biol; 2003 Sep; 48(17):2829-42. PubMed ID: 14516104 [TBL] [Abstract][Full Text] [Related]
12. Computer Simulations of the Tumor Vasculature: Applications to Interstitial Fluid Flow, Drug Delivery, and Oxygen Supply. Welter M; Rieger H Adv Exp Med Biol; 2016; 936():31-72. PubMed ID: 27739042 [TBL] [Abstract][Full Text] [Related]
13. Computational modelling suggests complex interactions between interstitial flow and tumour angiogenesis. Vilanova G; Burés M; Colominas I; Gomez H J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30185542 [TBL] [Abstract][Full Text] [Related]
14. Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling. Naghavi N; Hosseini FS; Sardarabadi M; Kalani H Microvasc Res; 2016 Sep; 107():51-64. PubMed ID: 27179697 [TBL] [Abstract][Full Text] [Related]
15. Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges. Siveen KS; Prabhu K; Krishnankutty R; Kuttikrishnan S; Tsakou M; Alali FQ; Dermime S; Mohammad RM; Uddin S Curr Vasc Pharmacol; 2017; 15(4):339-351. PubMed ID: 28056756 [TBL] [Abstract][Full Text] [Related]
16. A novel hypoxia-dependent 2-nitroimidazole KIN-841 inhibits tumour-specific angiogenesis by blocking production of angiogenic factors. Shimamura M; Nagasawa H; Ashino H; Yamamoto Y; Hazato T; Uto Y; Hori H; Inayama S Br J Cancer; 2003 Jan; 88(2):307-13. PubMed ID: 12610518 [TBL] [Abstract][Full Text] [Related]
17. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Pradeep CR; Sunila ES; Kuttan G Integr Cancer Ther; 2005 Dec; 4(4):315-21. PubMed ID: 16282508 [TBL] [Abstract][Full Text] [Related]
18. Insights into the regulation of tumor dormancy by angiogenesis in experimental tumors. Indraccolo S Adv Exp Med Biol; 2013; 734():37-52. PubMed ID: 23143974 [TBL] [Abstract][Full Text] [Related]
19. A Coupled Mathematical Model of Cell Migration, Vessel Cooption and Tumour Microenvironment during the Initiation of Micrometastases. Cai Y; Wu J; Li Z Mol Cell Biomech; 2015 Dec; 12(4):231-48. PubMed ID: 27263259 [TBL] [Abstract][Full Text] [Related]
20. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Jain RK; Tong RT; Munn LL Cancer Res; 2007 Mar; 67(6):2729-35. PubMed ID: 17363594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]