These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28223715)

  • 21. Abiotic, Graphitic Microstructures in Micaceous Metaquartzite about 3760 Million Years Old from Southwestern Greenland: Implications for Early Precambrian Microfossils.
    Nagy B; Zumberge JE; Nagy LA
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):1206-9. PubMed ID: 16592229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of diamond in the Earth's mantle.
    Stachel T; Harris JW
    J Phys Condens Matter; 2009 Sep; 21(36):364206. PubMed ID: 21832312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-situ abiogenic methane synthesis from diamond and graphite under geologically relevant conditions.
    Peña-Alvarez M; Brovarone AV; Donnelly ME; Wang M; Dalladay-Simpson P; Howie R; Gregoryanz E
    Nat Commun; 2021 Nov; 12(1):6387. PubMed ID: 34737292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden.
    Drake H; Roberts NMW; Heim C; Whitehouse MJ; Siljeström S; Kooijman E; Broman C; Ivarsson M; Åström ME
    Nat Commun; 2019 Oct; 10(1):4736. PubMed ID: 31628335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructural and geochemical characterization of Archean-Paleoproterozoic graphite particles: implications for recognizing traces of life in highly metamorphosed rocks.
    Schiffbauer JD; Yin L; Bodnar RJ; Kaufman AJ; Meng F; Hu J; Shen B; Yuan X; Bao H; Xiao S
    Astrobiology; 2007 Aug; 7(4):684-704. PubMed ID: 17723098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diamond growth from organic compounds in hydrous fluids deep within the Earth.
    Frezzotti ML
    Nat Commun; 2019 Oct; 10(1):4952. PubMed ID: 31666507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geological constraints on detecting the earliest life on Earth: a perspective from the Early Archaean (older than 3.7 Gyr) of southwest Greenland.
    Fedo CM; Whitehouse MJ; Kamber BS
    Philos Trans R Soc Lond B Biol Sci; 2006 Jun; 361(1470):851-67. PubMed ID: 16754603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abiogenic hydrocarbon production at lost city hydrothermal field.
    Proskurowski G; Lilley MD; Seewald JS; Früh-Green GL; Olson EJ; Lupton JE; Sylva SP; Kelley DS
    Science; 2008 Feb; 319(5863):604-7. PubMed ID: 18239121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constraints from the dehydration of antigorite on high-conductivity anomalies in subduction zones.
    Wang D; Liu X; Liu T; Shen K; Welch DO; Li B
    Sci Rep; 2017 Dec; 7(1):16893. PubMed ID: 29203777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.
    Kennedy M; Mrofka D; von der Borch C
    Nature; 2008 May; 453(7195):642-5. PubMed ID: 18509441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oregon subduction zone: venting, fauna, and carbonates.
    Kulm LD; Suess E; Moore JC; Carson B; Lewis BT; Ritger SD; Kadko DC; Thornburg TM; Embley RW; Rugh WD; Massoth GJ; Langseth MG; Cochrane GR; Scamman RL
    Science; 1986 Feb; 231(4738):561-6. PubMed ID: 17750967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immiscible hydrocarbon fluids in the deep carbon cycle.
    Huang F; Daniel I; Cardon H; Montagnac G; Sverjensky DA
    Nat Commun; 2017 Jun; 8():15798. PubMed ID: 28604740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subduction of fracture zones controls mantle melting and geochemical signature above slabs.
    Manea VC; Leeman WP; Gerya T; Manea M; Zhu G
    Nat Commun; 2014 Oct; 5():5095. PubMed ID: 25342158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths.
    Liu Y; He D; Gao C; Foley S; Gao S; Hu Z; Zong K; Chen H
    Sci Rep; 2015 Jun; 5():11547. PubMed ID: 26100577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin.
    Yoshioka H; Maruyama A; Nakamura T; Higashi Y; Fuse H; Sakata S; Bartlett DH
    Geobiology; 2010 Jun; 8(3):223-33. PubMed ID: 20059557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Serpentine stability to mantle depths and subduction-related magmatism.
    Ulmer P; Trommsdorff V
    Science; 1995 May; 268(5212):858-61. PubMed ID: 17792181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Episodes of fissure formation in the Alps: connecting quartz fluid inclusion, fissure monazite age, and fissure orientation data.
    Gnos E; Mullis J; Ricchi E; Bergemann CA; Janots E; Berger A
    Swiss J Geosci; 2021; 114(1):14. PubMed ID: 34720820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia.
    Currell M; Banfield D; Cartwright I; Cendón DI
    Environ Sci Pollut Res Int; 2017 May; 24(15):13168-13183. PubMed ID: 27497852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluid processes in subduction zones.
    Peacock SM
    Science; 1990 Apr; 248(4953):329-37. PubMed ID: 17784486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slab melting as a barrier to deep carbon subduction.
    Thomson AR; Walter MJ; Kohn SC; Brooker RA
    Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.