These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28223912)

  • 1. Diet-Induced Obesity and Circadian Disruption of Feeding Behavior.
    Blancas-Velazquez A; Mendoza J; Garcia AN; la Fleur SE
    Front Neurosci; 2017; 11():23. PubMed ID: 28223912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian influences on feeding behavior.
    la Fleur SE; Blancas-Velazquez AS; Stenvers DJ; Kalsbeek A
    Neuropharmacology; 2024 Sep; 256():110007. PubMed ID: 38795953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian Rhythms in Diet-Induced Obesity.
    Engin A
    Adv Exp Med Biol; 2017; 960():19-52. PubMed ID: 28585194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mice held at an environmental photic cycle oscillating at their
    Steckler R; Tamir S; Gutman R
    Chronobiol Int; 2021 Apr; 38(4):598-612. PubMed ID: 33455455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food-reward signalling in the suprachiasmatic clock.
    Mendoza J; Clesse D; Pévet P; Challet E
    J Neurochem; 2010 Mar; 112(6):1489-99. PubMed ID: 20067576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a free-choice high-fat high-sugar diet on brain PER2 and BMAL1 protein expression in mice.
    Blancas-Velazquez A; la Fleur SE; Mendoza J
    Appetite; 2017 Oct; 117():263-269. PubMed ID: 28687372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.
    Mendoza J; Graff C; Dardente H; Pevet P; Challet E
    J Neurosci; 2005 Feb; 25(6):1514-22. PubMed ID: 15703405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice.
    Zhou P; Werner JH; Lee D; Sheppard AD; Liangpunsakul S; Duffield GE
    Alcohol; 2015 Jun; 49(4):399-408. PubMed ID: 25960184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding.
    Polidarová L; Sládek M; Soták M; Pácha J; Sumová A
    Chronobiol Int; 2011 Apr; 28(3):204-15. PubMed ID: 21452916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus.
    Wang D; Opperhuizen AL; Reznick J; Turner N; Su Y; Cooney GJ; Kalsbeek A
    Brain Res; 2017 Sep; 1671():93-101. PubMed ID: 28709906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine Signaling in the Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding.
    Grippo RM; Tang Q; Zhang Q; Chadwick SR; Gao Y; Altherr EB; Sipe L; Purohit AM; Purohit NM; Sunkara MD; Cios KJ; Sidikpramana M; Spano AJ; Campbell JN; Steele AD; Hirsh J; Deppmann CD; Wu M; Scott MM; Güler AD
    Curr Biol; 2020 Jan; 30(2):196-208.e8. PubMed ID: 31902720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diet-Induced Obesity Disturbs Microglial Immunometabolism in a Time-of-Day Manner.
    Milanova IV; Kalsbeek MJT; Wang XL; Korpel NL; Stenvers DJ; Wolff SEC; de Goede P; Heijboer AC; Fliers E; la Fleur SE; Kalsbeek A; Yi CX
    Front Endocrinol (Lausanne); 2019; 10():424. PubMed ID: 31316470
    [No Abstract]   [Full Text] [Related]  

  • 13. Dopamine systems and biological rhythms: Let's get a move on.
    Tang Q; Assali DR; Güler AD; Steele AD
    Front Integr Neurosci; 2022; 16():957193. PubMed ID: 35965599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber?
    Webb IC; Baltazar RM; Lehman MN; Coolen LM
    Eur J Neurosci; 2009 Nov; 30(9):1739-48. PubMed ID: 19878278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diet-induced insulin resistance state disturbs brain clock processes and alters tuning of clock outputs in the Sand rat, Psammomys obesus.
    Touati H; Ouali-Hassenaoui S; Dekar-Madoui A; Challet E; Pévet P; Vuillez P
    Brain Res; 2018 Jan; 1679():116-124. PubMed ID: 29196219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic and reward feeding synchronises the rhythmic brain.
    Challet E; Mendoza J
    Cell Tissue Res; 2010 Jul; 341(1):1-11. PubMed ID: 20563601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
    Nováková M; Polidarová L; Sládek M; Sumová A
    Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian regulation of lipid metabolism.
    Gooley JJ
    Proc Nutr Soc; 2016 Nov; 75(4):440-450. PubMed ID: 27225642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing of food intake is more potent than habitual voluntary exercise to prevent diet-induced obesity in mice.
    Okauchi H; Hashimoto C; Nakao R; Oishi K
    Chronobiol Int; 2019 Jan; 36(1):57-74. PubMed ID: 30212233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian phenotyping of obese and diabetic db/db mice.
    Grosbellet E; Dumont S; Schuster-Klein C; Guardiola-Lemaitre B; Pevet P; Criscuolo F; Challet E
    Biochimie; 2016 May; 124():198-206. PubMed ID: 26144489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.