These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 2822487)
21. Genetic requirement of p47phox for superoxide production by murine microglia. Lavigne MC; Malech HL; Holland SM; Leto TL FASEB J; 2001 Feb; 15(2):285-7. PubMed ID: 11156938 [TBL] [Abstract][Full Text] [Related]
22. Tumor necrosis factor-alpha and interleukin-1 alpha synergistically enhance phorbol myristate acetate-induced superoxide production by rat bone marrow-derived macrophages. Tanner WG; Welborn MB; Shepherd VL Am J Respir Cell Mol Biol; 1992 Oct; 7(4):379-84. PubMed ID: 1327012 [TBL] [Abstract][Full Text] [Related]
23. Superoxide radical generation and Mn- and Cu-Zn superoxide dismutases activities in human leukemic cells. Kato M; Minakami H; Kuroiwa M; Kobayashi Y; Oshima S; Kozawa K; Morikawa A; Kimura H Hematol Oncol; 2003 Mar; 21(1):11-6. PubMed ID: 12605418 [TBL] [Abstract][Full Text] [Related]
24. Detection of superoxide production by activated microglia using a sensitive and specific chemiluminescence assay and microglia-mediated PC12h cell death. Tanaka M; Sotomatsu A; Yoshida T; Hirai S; Nishida A J Neurochem; 1994 Jul; 63(1):266-70. PubMed ID: 8207432 [TBL] [Abstract][Full Text] [Related]
25. Glucose- and phorbol myristate acetate-stimulated oxygen consumption and superoxide production in rat peritoneal macrophages is inhibited by dexamethasone. Rist RJ; Naftalin RJ Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):509-14. PubMed ID: 8387270 [TBL] [Abstract][Full Text] [Related]
26. Chloroquine and hydroxychloroquine inhibit multiple sites in metabolic pathways leading to neutrophil superoxide release. Hurst NP; French JK; Gorjatschko L; Betts WH J Rheumatol; 1988 Jan; 15(1):23-7. PubMed ID: 2832600 [TBL] [Abstract][Full Text] [Related]
27. Escherichia coli lipopolysaccharide potentiation and inhibition of rat neonatal microglia superoxide anion generation: correlation with prior lactic dehydrogenase, nitric oxide, tumor necrosis factor-alpha, thromboxane B2, and metalloprotease release. Mayer AM; Oh S; Ramsey KH; Jacobson PB; Glaser KB; Romanic AM Shock; 1999 Mar; 11(3):180-6. PubMed ID: 10188770 [TBL] [Abstract][Full Text] [Related]
28. Effects of macrophage colony-stimulating factor and phorbol myristate acetate on 2-D-deoxyglucose transport and superoxide production in rat peritoneal macrophages. Rist RJ; Jones GE; Naftalin RJ Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):119-28. PubMed ID: 1652936 [TBL] [Abstract][Full Text] [Related]
29. Arachidonic acid potentiates superoxide anion radical production by murine peritoneal macrophages stimulated with tumor promoters. Czerniecki BJ; Witz G Carcinogenesis; 1989 Oct; 10(10):1769-75. PubMed ID: 2551522 [TBL] [Abstract][Full Text] [Related]
30. Oxygen metabolism of human colostral macrophages: comparison with monocytes and polymorphonuclear leukocytes. Tsuda H; Takeshige K; Shibata Y; Minakami S J Biochem; 1984 May; 95(5):1237-45. PubMed ID: 6086600 [TBL] [Abstract][Full Text] [Related]
31. Method for in situ evaluation of superoxide production by pulmonary macrophages in the rat. Mochida S; Ogata I; Ohta Y; Oka T; Fujiwara K Acta Pathol Jpn; 1991 Mar; 41(3):217-20. PubMed ID: 1648858 [TBL] [Abstract][Full Text] [Related]
32. Effect of gentamicin and sisomicin on the generation of superoxide by human monocytes. Dri P; Menegazzi R; Pirotta F; Soranzo MR; Cramer R Chemioterapia; 1984 Jun; 3(3):159-62. PubMed ID: 6099223 [TBL] [Abstract][Full Text] [Related]
33. Formation of mixed disulfide of cystatin-beta in cultured macrophages treated with various oxidants. Tsukahara T; Kominami E; Katunuma N J Biochem; 1987 Jun; 101(6):1447-56. PubMed ID: 2822674 [TBL] [Abstract][Full Text] [Related]
34. Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis. Berton G; Gordon S Immunology; 1983 Aug; 49(4):705-15. PubMed ID: 6307868 [TBL] [Abstract][Full Text] [Related]
35. Transmembrane potential changes during phagocytosis in rat alveolar macrophages. Miles PR; Bowman L; Castranova V J Cell Physiol; 1981 Jan; 106(1):109-17. PubMed ID: 6259182 [TBL] [Abstract][Full Text] [Related]
36. HIV-1-infected monocytes and monocyte-derived macrophages are impaired in their ability to produce superoxide radicals. Howell AL; Groveman DS; Wallace PK; Fanger MW Int J Clin Lab Res; 1997; 27(2):111-7. PubMed ID: 9266281 [TBL] [Abstract][Full Text] [Related]
37. Rat macrophage treatment with lipopolysaccharide leads to a reduction in respiratory burst product secretion and a decrease in NADPH oxidase affinity. Johnson WJ; Sung CP Cell Immunol; 1987 Aug; 108(1):109-19. PubMed ID: 3038338 [TBL] [Abstract][Full Text] [Related]
38. Microglial contribution to oxidative stress in Alzheimer's disease. Colton CA; Chernyshev ON; Gilbert DL; Vitek MP Ann N Y Acad Sci; 2000; 899():292-307. PubMed ID: 10863548 [TBL] [Abstract][Full Text] [Related]
39. Superoxide release by peritoneal and bone marrow-derived mouse macrophages. Modulation by adherence and cell activation. Berton G; Gordon S Immunology; 1983 Aug; 49(4):693-704. PubMed ID: 6307867 [TBL] [Abstract][Full Text] [Related]
40. Aripiprazole inhibits superoxide generation from phorbol-myristate-acetate (PMA)-stimulated microglia in vitro: implication for antioxidative psychotropic actions via microglia. Kato TA; Monji A; Yasukawa K; Mizoguchi Y; Horikawa H; Seki Y; Hashioka S; Han YH; Kasai M; Sonoda N; Hirata E; Maeda Y; Inoguchi T; Utsumi H; Kanba S Schizophr Res; 2011 Jul; 129(2-3):172-82. PubMed ID: 21497059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]