BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28224894)

  • 1. Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan.
    Skorik YA; Golyshev AA; Kritchenkov AS; Gasilova ER; Poshina DN; Sivaram AJ; Jayakumar R
    Carbohydr Polym; 2017 Apr; 162():49-55. PubMed ID: 28224894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles.
    Jain A; Thakur K; Sharma G; Kush P; Jain UK
    Carbohydr Polym; 2016 Feb; 137():65-74. PubMed ID: 26686106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Characterization of Gefitinib Loaded Polymeric Nanoparticles by Ionic Gelation Method.
    Gupta M; Marwaha RK; Dureja H
    Pharm Nanotechnol; 2017; 5(4):301-309. PubMed ID: 28982345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery.
    Anandhakumar S; Krishnamoorthy G; Ramkumar KM; Raichur AM
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):378-385. PubMed ID: 27770906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan.
    Gupta U; Sharma S; Khan I; Gothwal A; Sharma AK; Singh Y; Chourasia MK; Kumar V
    Int J Biol Macromol; 2017 May; 98():810-819. PubMed ID: 28189791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionically Cross-Linked Chitosan Nanoparticles for Sustained Delivery of Docetaxel: Fabrication, Post-Formulation and Acute Oral Toxicity Evaluation.
    Mahmood MA; Madni A; Rehman M; Rahim MA; Jabar A
    Int J Nanomedicine; 2019; 14():10035-10046. PubMed ID: 31908458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.
    Gan Q; Wang T
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Carbohydr Polym; 2013 May; 94(2):940-5. PubMed ID: 23544653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles.
    Keawchaoon L; Yoksan R
    Colloids Surf B Biointerfaces; 2011 May; 84(1):163-71. PubMed ID: 21296562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Timolol Maleate Loaded Chitosan Nanoparticles For Improved Ocular Delivery.
    Saroha A; Pandey P; Kaushik D
    Pharm Nanotechnol; 2017; 5(4):310-316. PubMed ID: 28847270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linked chitosan in nano and bead scales as drug carriers for betamethasone and tetracycline.
    Taghizadeh MT; Ashassi-Sorkhabi H; Afkari R; Kazempour A
    Int J Biol Macromol; 2019 Jun; 131():581-588. PubMed ID: 30885730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.
    Fan W; Yan W; Xu Z; Ni H
    Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles.
    Cetin M; Aktas Y; Vural I; Capan Y; Dogan LA; Duman M; Dalkara T
    Drug Deliv; 2007 Nov; 14(8):525-9. PubMed ID: 18027182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity.
    Raj R; Wairkar S; Sridhar V; Gaud R
    Int J Biol Macromol; 2018 Apr; 109():27-35. PubMed ID: 29247729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles.
    Çakır MA; Icyer NC; Tornuk F
    Int J Biol Macromol; 2020 May; 151():230-238. PubMed ID: 32057871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and antioxidant activity of Elsholtzia splendens extract-loaded nanoparticles.
    Lee JS; Kim GH; Lee HG
    J Agric Food Chem; 2010 Mar; 58(6):3316-21. PubMed ID: 20187637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers.
    Lozano MV; Torrecilla D; Torres D; Vidal A; Domínguez F; Alonso MJ
    Biomacromolecules; 2008 Aug; 9(8):2186-93. PubMed ID: 18637687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-based nanoparticles for rosmarinic acid ocular delivery--In vitro tests.
    da Silva SB; Ferreira D; Pintado M; Sarmento B
    Int J Biol Macromol; 2016 Mar; 84():112-20. PubMed ID: 26645149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.
    Esmaeili A; Asgari A
    Int J Biol Macromol; 2015 Nov; 81():283-90. PubMed ID: 26257380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sunitinib loaded chitosan nanoparticles formulation and its evaluation.
    Joseph JJ; Sangeetha D; Gomathi T
    Int J Biol Macromol; 2016 Jan; 82():952-8. PubMed ID: 26522243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.