These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28225047)

  • 1. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability.
    Wang G; Huang X; Jiang P
    Sci Rep; 2017 Feb; 7():43071. PubMed ID: 28225047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-Inspired Fluoro-polydopamine Meets Barium Titanate Nanowires: A Perfect Combination to Enhance Energy Storage Capability of Polymer Nanocomposites.
    Wang G; Huang X; Jiang P
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7547-7555. PubMed ID: 28150490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decorating TiO
    Kang D; Wang G; Huang Y; Jiang P; Huang X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4077-4085. PubMed ID: 29300082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO
    Wang G; Huang Y; Wang Y; Jiang P; Huang X
    Phys Chem Chem Phys; 2017 Aug; 19(31):21058-21068. PubMed ID: 28748238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significantly Enhanced Energy Density by Tailoring the Interface in Hierarchically Structured TiO
    Prateek ; Bhunia R; Siddiqui S; Garg A; Gupta RK
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14329-14339. PubMed ID: 30892860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host-Guest Interface by Phosphonic Acids.
    Wang S; Xu P; Xu X; Kang D; Chen J; Li Z; Huang X
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring Dielectric Properties and Energy Density of Ferroelectric Polymer Nanocomposites by High-k Nanowires.
    Wang G; Huang X; Jiang P
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18017-27. PubMed ID: 26225887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF-TrFE-CFE)/PVDF polymer blended composite films.
    Mao P; Wang J; Zhang L; Sun Q; Liu X; He L; Liu S; Zhang S; Gong H
    Phys Chem Chem Phys; 2020 Jun; 22(23):13143-13153. PubMed ID: 32490855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles.
    Wang L; Huang X; Zhu Y; Jiang P
    Phys Chem Chem Phys; 2018 Feb; 20(7):5001-5011. PubMed ID: 29388645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites.
    Zhang T; Guo M; Jiang J; Zhang X; Lin Y; Nan CW; Shen Y
    RSC Adv; 2019 Nov; 9(62):35990-35997. PubMed ID: 35540594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Energy Storage Performance of PMMA Nanocomposites Utilizing Hierarchically Structured Nanowires Based on Interface Engineering.
    Xie B; Wang Q; Zhang Q; Liu Z; Lu J; Zhang H; Jiang S
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27382-27391. PubMed ID: 34081431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.
    Luo H; Zhang D; Jiang C; Yuan X; Chen C; Zhou K
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8061-9. PubMed ID: 25822911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene).
    Rahimabady M; Mirshekarloo MS; Yao K; Lu L
    Phys Chem Chem Phys; 2013 Oct; 15(38):16242-8. PubMed ID: 23999532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh Energy Efficiency and Large Discharge Energy Density in Flexible Dielectric Nanocomposites with Pb
    Zou K; He C; Yu Y; Huang J; Fan Z; Lu Y; Huang H; Zhang X; Zhang Q; He Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12847-12856. PubMed ID: 32084310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires.
    Tang H; Sodano HA
    Nano Lett; 2013 Apr; 13(4):1373-9. PubMed ID: 23464509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial engineering tailoring the dielectric behavior and energy density of BaTiO
    Qian K; Lv X; Chen S; Luo H; Zhang D
    Dalton Trans; 2018 Sep; 47(36):12759-12768. PubMed ID: 30151511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced energy density of PVDF-based nanocomposites via a core-shell strategy.
    Xu J; Fu C; Chu H; Wu X; Tan Z; Qian J; Li W; Song Z; Ran X; Nie W
    Sci Rep; 2020 Oct; 10(1):17084. PubMed ID: 33051480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonsolid TiO
    Cao Q; Zhu W; Chen W; Chen X; Yang R; Yang S; Zhang H; Gui X; Chen J
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8226-8234. PubMed ID: 35112828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Largely enhanced energy storage capability of a polymer nanocomposite utilizing a core-satellite strategy.
    Pan Z; Wang M; Chen J; Shen B; Liu J; Zhai J
    Nanoscale; 2018 Sep; 10(35):16621-16629. PubMed ID: 30155546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Conduction Band Inorganic Layers for Distinct Enhancement of Electrical Energy Storage in Polymer Nanocomposites.
    Zhu Y; Shen Z; Li Y; Chai B; Chen J; Jiang P; Huang X
    Nanomicro Lett; 2022 Jul; 14(1):151. PubMed ID: 35876955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.