These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 28225067)
1. Generation of Gross Chromosomal Rearrangements by a Single Engineered DNA Double Strand Break. Qiu Z; Zhang Z; Roschke A; Varga T; Aplan PD Sci Rep; 2017 Feb; 7():43156. PubMed ID: 28225067 [TBL] [Abstract][Full Text] [Related]
2. Efficient repair of DNA double-strand breaks in malignant cells with structural instability. Cheng Y; Zhang Z; Keenan B; Roschke AV; Nakahara K; Aplan PD Mutat Res; 2010 Jan; 683(1-2):115-22. PubMed ID: 19909760 [TBL] [Abstract][Full Text] [Related]
3. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment. Schipler A; Mladenova V; Soni A; Nikolov V; Saha J; Mladenov E; Iliakis G Nucleic Acids Res; 2016 Sep; 44(16):7673-90. PubMed ID: 27257076 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms underlying genome instability mediated by formation of foldback inversions in Li BZ; Putnam CD; Kolodner RD Elife; 2020 Aug; 9():. PubMed ID: 32762846 [TBL] [Abstract][Full Text] [Related]
5. Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts. Fahrer J; Huelsenbeck J; Jaurich H; Dörsam B; Frisan T; Eich M; Roos WP; Kaina B; Fritz G DNA Repair (Amst); 2014 Jun; 18():31-43. PubMed ID: 24680221 [TBL] [Abstract][Full Text] [Related]
6. Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts. Asaithamby A; Uematsu N; Chatterjee A; Story MD; Burma S; Chen DJ Radiat Res; 2008 Apr; 169(4):437-46. PubMed ID: 18363429 [TBL] [Abstract][Full Text] [Related]
7. Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation. Niimi A; Yamauchi M; Limsirichaikul S; Sekine R; Oike T; Sato H; Suzuki K; Held KD; Nakano T; Shibata A Genes Chromosomes Cancer; 2016 Aug; 55(8):650-60. PubMed ID: 27113385 [TBL] [Abstract][Full Text] [Related]
8. DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells. So CC; Martin A PLoS Genet; 2019 Apr; 15(4):e1008101. PubMed ID: 30946744 [TBL] [Abstract][Full Text] [Related]
9. PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER. Hromas R; Williamson E; Lee SH; Nickoloff J Trans Am Clin Climatol Assoc; 2016; 127():176-195. PubMed ID: 28066052 [TBL] [Abstract][Full Text] [Related]
10. Induction of genome instability by DNA damage in Saccharomyces cerevisiae. Myung K; Kolodner RD DNA Repair (Amst); 2003 Mar; 2(3):243-58. PubMed ID: 12547388 [TBL] [Abstract][Full Text] [Related]
11. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Franco S; Gostissa M; Zha S; Lombard DB; Murphy MM; Zarrin AA; Yan C; Tepsuporn S; Morales JC; Adams MM; Lou Z; Bassing CH; Manis JP; Chen J; Carpenter PB; Alt FW Mol Cell; 2006 Jan; 21(2):201-14. PubMed ID: 16427010 [TBL] [Abstract][Full Text] [Related]
12. Chromosomal translocations induced at specified loci in human stem cells. Brunet E; Simsek D; Tomishima M; DeKelver R; Choi VM; Gregory P; Urnov F; Weinstock DM; Jasin M Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10620-5. PubMed ID: 19549848 [TBL] [Abstract][Full Text] [Related]
13. Multipotent hematopoietic cells susceptible to alternative double-strand break repair pathways that promote genome rearrangements. Francis R; Richardson C Genes Dev; 2007 May; 21(9):1064-74. PubMed ID: 17473170 [TBL] [Abstract][Full Text] [Related]
14. The sticky business of histone H2AX in V(D)J recombination, maintenance of genomic stability, and suppression of lymphoma. Yin B; Bassing CH Immunol Res; 2008; 42(1-3):29-40. PubMed ID: 18622584 [TBL] [Abstract][Full Text] [Related]
15. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. VanHulle K; Lemoine FJ; Narayanan V; Downing B; Hull K; McCullough C; Bellinger M; Lobachev K; Petes TD; Malkova A Mol Cell Biol; 2007 Apr; 27(7):2601-14. PubMed ID: 17242181 [TBL] [Abstract][Full Text] [Related]
16. Processing-Challenges Generated by Clusters of DNA Double-Strand Breaks Underpin Increased Effectiveness of High-LET Radiation and Chromothripsis. Mladenov E; Saha J; Iliakis G Adv Exp Med Biol; 2018; 1044():149-168. PubMed ID: 29956296 [TBL] [Abstract][Full Text] [Related]
17. Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Rothkamm K; Kühne M; Jeggo PA; Löbrich M Cancer Res; 2001 May; 61(10):3886-93. PubMed ID: 11358801 [TBL] [Abstract][Full Text] [Related]
18. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks. Bañuelos CA; Banáth JP; MacPhail SH; Zhao J; Eaves CA; O'Connor MD; Lansdorp PM; Olive PL DNA Repair (Amst); 2008 Sep; 7(9):1471-83. PubMed ID: 18602349 [TBL] [Abstract][Full Text] [Related]
19. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways. Ghosh R; Roy S; Kamyab J; Danzter F; Franco S DNA Repair (Amst); 2016 Sep; 45():56-62. PubMed ID: 27373144 [TBL] [Abstract][Full Text] [Related]
20. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts. Ahmed EA; Vélaz E; Rosemann M; Gilbertz KP; Scherthan H Chromosoma; 2017 Mar; 126(2):287-298. PubMed ID: 27136939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]