BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28225113)

  • 1. Solvent-controlled reversible switching between adsorbed self-assembled nanoribbons and nanotubes.
    Jamal A; Nyrkova I; Mesini P; Militzer S; Reiter G
    Nanoscale; 2017 Mar; 9(9):3293-3303. PubMed ID: 28225113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirally Twisted Ultrathin Polydopamine Nanoribbons: Synthesis and Spontaneous Assembly of Silver Nanoparticles on Them.
    Awasthi AK; Bhagat SD; Ramakrishnan R; Srivastava A
    Chemistry; 2019 Oct; 25(56):12905-12910. PubMed ID: 31240773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide.
    Mason ML; Lalisse RF; Finnegan TJ; Hadad CM; Modarelli DA; Parquette JR
    Langmuir; 2019 Sep; 35(38):12460-12468. PubMed ID: 31469284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different nanostructures caused by competition of intra- and inter-β-sheet interactions in hierarchical self-assembly of short peptides.
    Zhou P; Deng L; Wang Y; Lu JR; Xu H
    J Colloid Interface Sci; 2016 Feb; 464():219-28. PubMed ID: 26619132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles.
    Ziserman L; Lee HY; Raghavan SR; Mor A; Danino D
    J Am Chem Soc; 2011 Mar; 133(8):2511-7. PubMed ID: 21244023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilayers directly scrolling up to form nanotubes via self-assembly of an achiral small molecule.
    Zhang Y; Wang S; Liu Y; Jin Y; Xia Y; Song B
    Nanoscale; 2017 Jan; 9(4):1491-1495. PubMed ID: 28067401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembled Helical and Twisted Nanostructures of a Preferred Handedness from Achiral π-Conjugated Oligo( p-phenylenevinylene) Derivatives.
    Cui Y; Tao D; Huang X; Lu G; Feng C
    Langmuir; 2019 Feb; 35(8):3134-3142. PubMed ID: 30712352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of an alkylated guanosine derivative into ordered supramolecular nanoribbons in solution and on solid surfaces.
    Lena S; Brancolini G; Gottarelli G; Mariani P; Masiero S; Venturini A; Palermo V; Pandoli O; Pieraccini S; Samorì P; Spada GP
    Chemistry; 2007; 13(13):3757-64. PubMed ID: 17226871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles.
    Zhao Y; Hu X; Zhang L; Wang D; King SM; Rogers SE; Wang J; Lu JR; Xu H
    J Colloid Interface Sci; 2021 Feb; 583():553-562. PubMed ID: 33038605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The concept of strongly interacting groups in self-assembly of soft matter.
    Nyrkova IA; Semenov AN
    Eur Phys J E Soft Matter; 2018 Sep; 41(9):103. PubMed ID: 30194515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled nanotubes and helical tapes from diacetylene nonionic amphiphiles. Structural studies before and after polymerization.
    Perino A; Schmutz M; Meunier S; Mésini PJ; Wagner A
    Langmuir; 2011 Oct; 27(19):12149-55. PubMed ID: 21902211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.
    Wang Z; Li H; Liu Z; Shi Z; Lu J; Suenaga K; Joung SK; Okazaki T; Gu Z; Zhou J; Gao Z; Li G; Sanvito S; Wang E; Iijima S
    J Am Chem Soc; 2010 Oct; 132(39):13840-7. PubMed ID: 20828123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning One-Dimensional Nanostructures of Bola-Like Peptide Amphiphiles by Varying the Hydrophilic Amino Acids.
    Zhao Y; Deng L; Yang W; Wang D; Pambou E; Lu Z; Li Z; Wang J; King S; Rogers S; Xu H; Lu JR
    Chemistry; 2016 Aug; 22(32):11394-404. PubMed ID: 27362441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent Dielectricity-Modulated Helical Assembly and Morphologic Transformation of Achiral Surfactant-Inorganic Cluster Ionic Complexes.
    Zhang J; Chen X; Li W; Li B; Wu L
    Langmuir; 2017 Nov; 33(44):12750-12758. PubMed ID: 29048910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality.
    Zhang L; Zhou L; Xu N; Ouyang Z
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8191-8195. PubMed ID: 28508524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for water-promoted supramolecular chirality inversion in helical rosette nanotubes.
    Johnson RS; Yamazaki T; Kovalenko A; Fenniri H
    J Am Chem Soc; 2007 May; 129(17):5735-43. PubMed ID: 17417852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigid-flexible block molecules based on a laterally extended aromatic segment: hierarchical assembly into single fibers, flat ribbons, and twisted ribbons.
    Lee E; Huang Z; Ryu JH; Lee M
    Chemistry; 2008; 14(23):6957-66. PubMed ID: 18604856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal orbital studies on the 1D silic-diyne nanoribbons and nanotubes.
    Zhu Y; Bai H; Huang Y
    J Phys Condens Matter; 2016 Feb; 28(4):045303. PubMed ID: 26744378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-step mechanism and integrity of titanate nanoribbons.
    Bellat V; Chassagnon R; Heintz O; Saviot L; Vandroux D; Millot N
    Dalton Trans; 2015 Jan; 44(3):1150-60. PubMed ID: 25412498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.