BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28225173)

  • 1. Monolithic stationary phases with a longitudinal gradient of porosity.
    Urban J; Hájek T; Svec F
    J Sep Sci; 2017 Apr; 40(8):1703-1709. PubMed ID: 28225173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore volume accessibility of particulate and monolithic stationary phases.
    Urban J
    J Chromatogr A; 2015 May; 1396():54-61. PubMed ID: 25892635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hypercrosslinking conditions on pore size distribution and efficiency of monolithic stationary phases.
    Urban J; Škeříková V
    J Sep Sci; 2014 Nov; 37(21):3082-9. PubMed ID: 25113521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypercrosslinking: new approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules.
    Urban J; Svec F; Fréchet JM
    J Chromatogr A; 2010 Dec; 1217(52):8212-21. PubMed ID: 21092973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleophilic substitution in preparation and surface modification of hypercrosslinked stationary phases.
    Janků S; Škeříková V; Urban J
    J Chromatogr A; 2015 Apr; 1388():151-7. PubMed ID: 25728663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography.
    Lin SL; Wang CC; Fuh MR
    Anal Chim Acta; 2016 Oct; 939():117-127. PubMed ID: 27639150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly stable surface modification of hypercrosslinked monolithic capillary columns and their application in hydrophilic interaction chromatography.
    Škeříková V; Urban J
    J Sep Sci; 2013 Sep; 36(17):2806-12. PubMed ID: 23868530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking.
    Maya F; Svec F
    J Chromatogr A; 2013 Nov; 1317():32-8. PubMed ID: 23910448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photografting of polymer monoliths by a crosslinking monomer.
    Komendová M; Svobodová P; Urban J
    J Chromatogr A; 2020 Nov; 1631():461558. PubMed ID: 32961377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ion adsorption on CEC separation of small molecules using hypercrosslinked porous polymer monolithic capillary columns.
    Chen XJ; Dinh NP; Zhao J; Wang YT; Li SP; Svec F
    J Sep Sci; 2012 Jun; 35(12):1502-5. PubMed ID: 22740260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and evaluation of 1,6-hexanediol ethoxylate diacrylate-based alkyl methacrylate monolithic capillary column for separating small molecules.
    Lin SL; Wu YR; Lin TY; Fuh MR
    J Chromatogr A; 2013 Jul; 1298():35-43. PubMed ID: 23726078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current trends in the development of porous polymer monoliths for the separation of small molecules.
    Urban J
    J Sep Sci; 2016 Jan; 39(1):51-68. PubMed ID: 26420171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography.
    Lin SL; Wu YR; Lin TY; Fuh MR
    Anal Chim Acta; 2015 Apr; 871():57-65. PubMed ID: 25847162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient separation of small molecules using a large surface area hypercrosslinked monolithic polymer capillary column.
    Urban J; Svec F; Fréchet JM
    Anal Chem; 2010 Mar; 82(5):1621-3. PubMed ID: 20141105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amine Gradient Stationary Phases on In-House Built Monolithic Columns for Liquid Chromatography.
    Dewoolkar VC; Jeong LN; Cook DW; Ashraf KM; Rutan SC; Collinson MM
    Anal Chem; 2016 Jun; 88(11):5941-9. PubMed ID: 27203513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part I. Reversed-phase liquid chromatography.
    Jandera P; Staňková M; Škeříková V; Urban J
    J Chromatogr A; 2013 Jan; 1274():97-106. PubMed ID: 23273635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous monoliths: stationary phases of choice for high performance liquid chromatography in various formats.
    Svec F
    Se Pu; 2005 Nov; 23(6):585-94. PubMed ID: 16498986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns.
    Greiderer A; Trojer L; Huck CW; Bonn GK
    J Chromatogr A; 2009 Nov; 1216(45):7747-54. PubMed ID: 19762035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins.
    Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK
    J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.