These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 28225257)
1. Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells. Liu Y; Zhang Z; Feng S; Li M; Wu L; Hou R; Xu X; Chen X; Bo Z J Am Chem Soc; 2017 Mar; 139(9):3356-3359. PubMed ID: 28225257 [TBL] [Abstract][Full Text] [Related]
2. Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in Ternary Polymer Solar Cells. Yu R; Yao H; Cui Y; Hong L; He C; Hou J Adv Mater; 2019 Sep; 31(36):e1902302. PubMed ID: 31294900 [TBL] [Abstract][Full Text] [Related]
3. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Huang H; Guo Q; Feng S; Zhang C; Bi Z; Xue W; Yang J; Song J; Li C; Xu X; Tang Z; Ma W; Bo Z Nat Commun; 2019 Jul; 10(1):3038. PubMed ID: 31292441 [TBL] [Abstract][Full Text] [Related]
4. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
5. A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells. Chen YN; Li M; Wang Y; Wang J; Zhang M; Zhou Y; Yang J; Liu Y; Liu F; Tang Z; Bao Q; Bo Z Angew Chem Int Ed Engl; 2020 Dec; 59(50):22714-22720. PubMed ID: 32866327 [TBL] [Abstract][Full Text] [Related]
6. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content. Wang K; Guo X; Guo B; Li W; Zhang M; Li Y Macromol Rapid Commun; 2016 Jul; 37(13):1066-73. PubMed ID: 27174683 [TBL] [Abstract][Full Text] [Related]
7. A Narrow-Bandgap n-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar Cells. Sun H; Yu H; Shi Y; Yu J; Peng Z; Zhang X; Liu B; Wang J; Singh R; Lee J; Li Y; Wei Z; Liao Q; Kan Z; Ye L; Yan H; Gao F; Guo X Adv Mater; 2020 Oct; 32(43):e2004183. PubMed ID: 32954584 [TBL] [Abstract][Full Text] [Related]
8. Naphthalenediimide-alt-Fused Thiophene D-A Copolymers for the Application as Acceptor in All-Polymer Solar Cells. Xue L; Yang Y; Zhang ZG; Zhang J; Gao L; Bin H; Yang Y; Li Y Chem Asian J; 2016 Oct; 11(19):2785-2791. PubMed ID: 27253368 [TBL] [Abstract][Full Text] [Related]
9. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells. Dou C; Long X; Ding Z; Xie Z; Liu J; Wang L Angew Chem Int Ed Engl; 2016 Jan; 55(4):1436-40. PubMed ID: 26663513 [TBL] [Abstract][Full Text] [Related]
10. A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. Lin Y; He Q; Zhao F; Huo L; Mai J; Lu X; Su CJ; Li T; Wang J; Zhu J; Sun Y; Wang C; Zhan X J Am Chem Soc; 2016 Mar; 138(9):2973-6. PubMed ID: 26909887 [TBL] [Abstract][Full Text] [Related]
11. Polymer Acceptor Based on B←N Units with Enhanced Electron Mobility for Efficient All-Polymer Solar Cells. Zhao R; Dou C; Xie Z; Liu J; Wang L Angew Chem Int Ed Engl; 2016 Apr; 55(17):5313-7. PubMed ID: 26990376 [TBL] [Abstract][Full Text] [Related]
12. Side-Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fused-Ring Electron Acceptors. Zhang X; Li C; Qin L; Chen H; Yu J; Wei Y; Liu X; Zhang J; Wei Z; Gao F; Peng Q; Huang H Angew Chem Int Ed Engl; 2021 Aug; 60(32):17720-17725. PubMed ID: 34060196 [TBL] [Abstract][Full Text] [Related]
13. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells. Chen D; Yao J; Chen L; Yin J; Lv R; Huang B; Liu S; Zhang ZG; Yang C; Chen Y; Li Y Angew Chem Int Ed Engl; 2018 Apr; 57(17):4580-4584. PubMed ID: 29468852 [TBL] [Abstract][Full Text] [Related]
14. Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells. Yang Y; Zhang ZG; Bin H; Chen S; Gao L; Xue L; Yang C; Li Y J Am Chem Soc; 2016 Nov; 138(45):15011-15018. PubMed ID: 27776415 [TBL] [Abstract][Full Text] [Related]
15. High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering. Zhang X; Qin L; Yu J; Li Y; Wei Y; Liu X; Lu X; Gao F; Huang H Angew Chem Int Ed Engl; 2021 May; 60(22):12475-12481. PubMed ID: 33749088 [TBL] [Abstract][Full Text] [Related]
16. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Liang Y; Yu L Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907 [TBL] [Abstract][Full Text] [Related]
17. A New Noncovalently Fused-Ring Electron Acceptor Based on 3,7-Dialkyloxybenzo[1,2-b:4,5-b']dithiophene for Low-Cost and High-Performance Organic Solar Cells. Zhang X; Qin L; Li L; Liu X; Wei Y; Huang H Macromol Rapid Commun; 2022 Aug; 43(16):e2200085. PubMed ID: 35298056 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Non-Fused-Ring Electron Acceptors Enabled by the Conformational Lock and Structural Isomerization Effects. Zhao J; Xu X; Yu L; Li R; Li Y; Peng Q ACS Appl Mater Interfaces; 2021 Jun; 13(21):25214-25223. PubMed ID: 34014088 [TBL] [Abstract][Full Text] [Related]
19. Non-fused Polymerized Small-Molecule Acceptors with a Benzothiadiazole Core for All-Polymer Solar Cells. Wang C; Fang J; Guan C; Wu T; Liu X; Liu F; Xiao C; Li W ACS Appl Mater Interfaces; 2023 Mar; 15(10):13363-13370. PubMed ID: 36854711 [TBL] [Abstract][Full Text] [Related]
20. Fullerene-bisadduct acceptors for polymer solar cells. Li Y Chem Asian J; 2013 Oct; 8(10):2316-28. PubMed ID: 23853151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]