These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28225601)

  • 1. Rationalizing the Binding Kinetics for the Inhibition of the Burkholderia pseudomallei FabI1 Enoyl-ACP Reductase.
    Neckles C; Eltschkner S; Cummings JE; Hirschbeck M; Daryaee F; Bommineni GR; Zhang Z; Spagnuolo L; Yu W; Davoodi S; Slayden RA; Kisker C; Tonge PJ
    Biochemistry; 2017 Apr; 56(13):1865-1878. PubMed ID: 28225601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituted diphenyl ethers as a novel chemotherapeutic platform against Burkholderia pseudomallei.
    Cummings JE; Beaupre AJ; Knudson SE; Liu N; Yu W; Neckles C; Wang H; Khanna A; Bommineni GR; Trunck LA; Schweizer HP; Tonge PJ; Slayden RA
    Antimicrob Agents Chemother; 2014; 58(3):1646-51. PubMed ID: 24379198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Burkholderia pseudomallei enoyl-acyl carrier protein reductase FabI1 is essential for in vivo growth and is the target of a novel chemotherapeutic with efficacy.
    Cummings JE; Kingry LC; Rholl DA; Schweizer HP; Tonge PJ; Slayden RA
    Antimicrob Agents Chemother; 2014; 58(2):931-5. PubMed ID: 24277048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and inhibition of the FabI enoyl-ACP reductase from Burkholderia pseudomallei.
    Liu N; Cummings JE; England K; Slayden RA; Tonge PJ
    J Antimicrob Chemother; 2011 Mar; 66(3):564-73. PubMed ID: 21393229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFN-1252 is a potent inhibitor of enoyl-ACP reductase from Burkholderia pseudomallei--Crystal structure, mode of action, and biological activity.
    Rao KN; Lakshminarasimhan A; Joseph S; Lekshmi SU; Lau MS; Takhi M; Sreenivas K; Nathan S; Yusof R; Abd Rahman N; Ramachandra M; Antony T; Subramanya H
    Protein Sci; 2015 May; 24(5):832-40. PubMed ID: 25644789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow-onset inhibition of the FabI enoyl reductase from francisella tularensis: residence time and in vivo activity.
    Lu H; England K; am Ende C; Truglio JJ; Luckner S; Reddy BG; Marlenee NL; Knudson SE; Knudson DL; Bowen RA; Kisker C; Slayden RA; Tonge PJ
    ACS Chem Biol; 2009 Mar; 4(3):221-31. PubMed ID: 19206187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis.
    Luckner SR; Liu N; am Ende CW; Tonge PJ; Kisker C
    J Biol Chem; 2010 May; 285(19):14330-7. PubMed ID: 20200152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous Molecular Dynamics Simulations of the M. tuberculosis Enoyl-ACP Reductase-NADH System and Its Complex with a Substrate Mimic or Diphenyl Ethers Inhibitors.
    da Silva Lima CH; de Alencastro RB; Kaiser CR; de Souza MV; Rodrigues CR; Albuquerque MG
    Int J Mol Sci; 2015 Oct; 16(10):23695-722. PubMed ID: 26457706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase.
    Neckles C; Pschibul A; Lai CT; Hirschbeck M; Kuper J; Davoodi S; Zou J; Liu N; Pan P; Shah S; Daryaee F; Bommineni GR; Lai C; Simmerling C; Kisker C; Tonge PJ
    Biochemistry; 2016 May; 55(21):2992-3006. PubMed ID: 27136302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase.
    Wang H; Liu L; Lu Y; Pan P; Hooker JM; Fowler JS; Tonge PJ
    Bioorg Med Chem Lett; 2015 Nov; 25(21):4782-4786. PubMed ID: 26227776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of aryl ether inhibitors of the Bacillus anthracis enoyl-ACP reductase.
    Tipparaju SK; Mulhearn DC; Klein GM; Chen Y; Tapadar S; Bishop MH; Yang S; Chen J; Ghassemi M; Santarsiero BD; Cook JL; Johlfs M; Mesecar AD; Johnson ME; Kozikowski AP
    ChemMedChem; 2008 Aug; 3(8):1250-68. PubMed ID: 18663709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptidyl-Prolyl Isomerase
    Bzdyl NM; Scott NE; Norville IH; Scott AE; Atkins T; Pang S; Sarovich DS; Coombs G; Inglis TJJ; Kahler CM; Sarkar-Tyson M
    Infect Immun; 2019 Oct; 87(10):. PubMed ID: 31331957
    [No Abstract]   [Full Text] [Related]  

  • 13. Rational optimization of drug-target residence time: insights from inhibitor binding to the Staphylococcus aureus FabI enzyme-product complex.
    Chang A; Schiebel J; Yu W; Bommineni GR; Pan P; Baxter MV; Khanna A; Sotriffer CA; Kisker C; Tonge PJ
    Biochemistry; 2013 Jun; 52(24):4217-28. PubMed ID: 23697754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (FabI).
    Mehboob S; Song J; Hevener KE; Su PC; Boci T; Brubaker L; Truong L; Mistry T; Deng J; Cook JL; Santarsiero BD; Ghosh AK; Johnson ME
    Bioorg Med Chem Lett; 2015 Mar; 25(6):1292-6. PubMed ID: 25677657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of tigecycline in the treatment of acute Burkholderia pseudomallei infection in a murine model.
    Feterl M; Govan B; Engler C; Norton R; Ketheesan N
    Int J Antimicrob Agents; 2006 Nov; 28(5):460-4. PubMed ID: 17046208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and inhibition of saFabI, the enoyl reductase from Staphylococcus aureus.
    Xu H; Sullivan TJ; Sekiguchi J; Kirikae T; Ojima I; Stratton CF; Mao W; Rock FL; Alley MR; Johnson F; Walker SG; Tonge PJ
    Biochemistry; 2008 Apr; 47(14):4228-36. PubMed ID: 18335995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel diphenyl ethers: design, docking studies, synthesis and inhibition of enoyl ACP reductase of Plasmodium falciparum and Escherichia coli.
    Chhibber M; Kumar G; Parasuraman P; Ramya TN; Surolia N; Surolia A
    Bioorg Med Chem; 2006 Dec; 14(23):8086-98. PubMed ID: 16893651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.
    Schiebel J; Chang A; Shah S; Lu Y; Liu L; Pan P; Hirschbeck MW; Tareilus M; Eltschkner S; Yu W; Cummings JE; Knudson SE; Bommineni GR; Walker SG; Slayden RA; Sotriffer CA; Tonge PJ; Kisker C
    J Biol Chem; 2014 Jun; 289(23):15987-6005. PubMed ID: 24739388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Resistance to Folate Pathway Inhibitors in
    Podnecky NL; Rhodes KA; Mima T; Drew HR; Chirakul S; Wuthiekanun V; Schupp JM; Sarovich DS; Currie BJ; Keim P; Schweizer HP
    mBio; 2017 Sep; 8(5):. PubMed ID: 28874476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and inhibition of the FabV enoyl-ACP reductase from Burkholderia mallei.
    Lu H; Tonge PJ
    Biochemistry; 2010 Feb; 49(6):1281-9. PubMed ID: 20055482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.