These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 28225763)

  • 1. Elucidation of the biosynthesis of the methane catalyst coenzyme F
    Moore SJ; Sowa ST; Schuchardt C; Deery E; Lawrence AD; Ramos JV; Billig S; Birkemeyer C; Chivers PT; Howard MJ; Rigby SE; Layer G; Warren MJ
    Nature; 2017 Mar; 543(7643):78-82. PubMed ID: 28225763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea.
    Zheng K; Ngo PD; Owens VL; Yang XP; Mansoorabadi SO
    Science; 2016 Oct; 354(6310):339-342. PubMed ID: 27846569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis.
    Thauer RK; Bonacker LG
    Ciba Found Symp; 1994; 180():210-22; discussion 222-7. PubMed ID: 7842854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of coenzyme F430 biosynthetic enzymes and intermediates.
    Ray P; Rand-Fleming CR; Mansoorabadi SO
    Methods Enzymol; 2024; 702():147-170. PubMed ID: 39155109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation.
    Wagner T; Kahnt J; Ermler U; Shima S
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10630-3. PubMed ID: 27467699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Handling methane: a Ni(i) F
    Wu J; Chen SL
    Chem Commun (Camb); 2021 Jan; 57(4):476-479. PubMed ID: 33326521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation.
    Ermler U; Grabarse W; Shima S; Goubeaud M; Thauer RK
    Science; 1997 Nov; 278(5342):1457-62. PubMed ID: 9367957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F430 from methyl-coenzyme M reductase.
    Dey M; Kunz RC; Van Heuvelen KM; Craft JL; Horng YC; Tang Q; Bocian DF; George SJ; Brunold TC; Ragsdale SW
    Biochemistry; 2006 Oct; 45(39):11915-33. PubMed ID: 17002292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.
    Ragsdale SW
    Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Dynamics of the Methyl-Coenzyme M Reductase Active Site Are Influenced by Coenzyme F
    Polêto MD; Allen KD; Lemkul JA
    Biochemistry; 2024 Jul; 63(14):1783-1794. PubMed ID: 38914925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of coenzyme F430 in methanogenic bacteria. Identification of 15,17(3)-seco-F430-17(3)-acid as an intermediate.
    Pfaltz A; Kobelt A; Hüster R; Thauer RK
    Eur J Biochem; 1987 Dec; 170(1-2):459-67. PubMed ID: 3691535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of Chemically Stable Multibonds: Nitrogenase-Like Biosynthesis of Tetrapyrroles.
    Layer G; Krausze J; Moser J
    Adv Exp Med Biol; 2017; 925():147-161. PubMed ID: 27957709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moderating influence of proteins on nonplanar tetrapyrrole deformations: coenzyme F430 in methyl-coenzyme-M reductase.
    Todd LN; Zimmer M
    Inorg Chem; 2002 Dec; 41(25):6831-7. PubMed ID: 12470081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of possible competing mechanisms for Ni-containing methyl-coenzyme M reductase.
    Chen SL; Blomberg MR; Siegbahn PE
    Phys Chem Chem Phys; 2014 Jul; 16(27):14029-35. PubMed ID: 24901069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations.
    Duin EC; McKee ML
    J Phys Chem B; 2008 Feb; 112(8):2466-82. PubMed ID: 18247503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic Systems with Homology to Nitrogenase: Biosynthesis of Bacteriochlorophyll and Coenzyme F
    Moser J; Layer G
    Methods Mol Biol; 2019; 1876():25-35. PubMed ID: 30317472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity Factors in Catalytic Methanogenesis and Their Tuning upon Coenzyme F430 Biosynthesis.
    Bharadwaz P; Maldonado-Domínguez M; Chalupský J; Srnec M
    J Am Chem Soc; 2023 Apr; 145(16):9039-9051. PubMed ID: 37043414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of Methyl Coenzyme M Reductase in the Methanogenic Archaeon Methanococcus maripaludis.
    Lyu Z; Chou CW; Shi H; Wang L; Ghebreab R; Phillips D; Yan Y; Duin EC; Whitman WB
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29339414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purified methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(I) oxidation state by titanium(III) citrate.
    Goubeaud M; Schreiner G; Thauer RK
    Eur J Biochem; 1997 Jan; 243(1-2):110-4. PubMed ID: 9030728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor F430 as a biomarker for methanogenic activity: application to an anaerobic bioreactor system.
    Passaris I; Van Gaelen P; Cornelissen R; Simoens K; Grauwels D; Vanhaecke L; Springael D; Smets I
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1191-1201. PubMed ID: 29230528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.