BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28225784)

  • 1. A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma.
    Hassan MS; Awasthi N; Li J; Schwarz MA; Schwarz RE; von Holzen U
    PLoS One; 2017; 12(2):e0171824. PubMed ID: 28225784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination effect of lapatinib with foretinib in HER2 and MET co-activated experimental esophageal adenocarcinoma.
    Hassan MS; Williams F; Awasthi N; Schwarz MA; Schwarz RE; Li J; von Holzen U
    Sci Rep; 2019 Nov; 9(1):17608. PubMed ID: 31772236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal Model: Xenograft Mouse Models in Esophageal Adenocarcinoma.
    Hassan MS; von Holzen U
    Methods Mol Biol; 2018; 1756():151-164. PubMed ID: 29600368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Esophageal Adenocarcinoma Cells and Xenograft Tumors Exposed to Erb-b2 Receptor Tyrosine Kinase 2 and 3 Inhibitors Activate Transforming Growth Factor Beta Signaling, Which Induces Epithelial to Mesenchymal Transition.
    Ebbing EA; Steins A; Fessler E; Stathi P; Lesterhuis WJ; Krishnadath KK; Vermeulen L; Medema JP; Bijlsma MF; van Laarhoven HWM
    Gastroenterology; 2017 Jul; 153(1):63-76.e14. PubMed ID: 28286209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved xenograft efficiency of esophageal adenocarcinoma cell lines through in vivo selection.
    Melsens E; De Vlieghere E; Descamps B; Vanhove C; De Wever O; Ceelen W; Pattyn P
    Oncol Rep; 2017 Jul; 38(1):71-81. PubMed ID: 28504813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing a peritoneal dissemination xenograft mouse model for survival outcome assessment of experimental gastric cancer.
    Zhang C; Awasthi N; Schwarz MA; Schwarz RE
    J Surg Res; 2013 Jun; 182(2):227-34. PubMed ID: 23201270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival benefit of intravenous and intraperitoneal paclitaxel with S-1 in pancreatic ductal adenocarcinoma patients with peritoneal metastasis: a retrospective study in a single institution.
    Satoi S; Yanagimoto H; Yamamoto T; Hirooka S; Yamaki S; Kosaka H; Inoue K; Hashimoto Y; Matsui Y; Kon M
    J Hepatobiliary Pancreat Sci; 2017 May; 24(5):289-296. PubMed ID: 28301088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A specific expression profile of LC3B and p62 is associated with nonresponse to neoadjuvant chemotherapy in esophageal adenocarcinomas.
    Adams O; Janser FA; Dislich B; Berezowska S; Humbert M; Seiler CA; Kroell D; Slotta-Huspenina J; Feith M; Ott K; Tschan MP; Langer R
    PLoS One; 2018; 13(6):e0197610. PubMed ID: 29897944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The angiotensin II type 1 receptor antagonist telmisartan inhibits cell proliferation and tumor growth of esophageal adenocarcinoma via the AMPKα/mTOR pathway in vitro and in vivo.
    Fujihara S; Morishita A; Ogawa K; Tadokoro T; Chiyo T; Kato K; Kobara H; Mori H; Iwama H; Masaki T
    Oncotarget; 2017 Jan; 8(5):8536-8549. PubMed ID: 28052030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the antitumor activity of Nab-paclitaxel and intraperitoneal solvent-based paclitaxel regarding peritoneal metastasis in gastric cancer.
    Kinoshita J; Fushida S; Tsukada T; Oyama K; Watanabe T; Shoji M; Okamoto K; Nakanuma S; Sakai S; Makino I; Furukawa H; Hayashi H; Nakamura K; Inokuchi M; Nakagawara H; Miyashita T; Tajima H; Takamura H; Ninomiya I; Fujimura T; Masakazu Y; Hirakawa K; Ohta T
    Oncol Rep; 2014 Jul; 32(1):89-96. PubMed ID: 24859429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Her2-Targeted Therapy Induces Autophagy in Esophageal Adenocarcinoma Cells.
    Janser FA; Adams O; Bütler V; Schläfli AM; Dislich B; Seiler CA; Kröll D; Langer R; Tschan MP
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30297650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of intraperitoneal chemotherapy with paclitaxel targeting peritoneal micrometastasis as revealed by GFP-tagged human gastric cancer cell lines in nude mice.
    Ohashi N; Kodera Y; Nakanishi H; Yokoyama H; Fujiwara M; Koike M; Hibi K; Nakao A; Tatematsu M
    Int J Oncol; 2005 Sep; 27(3):637-44. PubMed ID: 16077911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing a xenograft mouse model of peritoneal dissemination of gastric cancer with organ invasion and fibrosis.
    Okazaki M; Fushida S; Harada S; Tsukada T; Kinoshita J; Oyama K; Miyashita T; Ninomiya I; Ohta T
    BMC Cancer; 2017 Jan; 17(1):23. PubMed ID: 28056854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodistribution of humanized anti-VEGF monoclonal antibody/bevacizumab on peritoneal metastatic models with subcutaneous xenograft of gastric cancer in mice.
    Yagi Y; Fushida S; Harada S; Tsukada T; Kinoshita J; Oyama K; Fujita H; Ninomiya I; Fujimura T; Kayahara M; Kinuya S; Yashiro M; Hirakawa K; Ohta T
    Cancer Chemother Pharmacol; 2010 Sep; 66(4):745-53. PubMed ID: 20033809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel metastatic models of esophageal adenocarcinoma derived from FLO-1 cells highlight the importance of E-cadherin in cancer metastasis.
    Liu DS; Hoefnagel SJ; Fisher OM; Krishnadath KK; Montgomery KG; Busuttil RA; Colebatch AJ; Read M; Duong CP; Phillips WA; Clemons NJ
    Oncotarget; 2016 Dec; 7(50):83342-83358. PubMed ID: 27863424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraperitoneal chemotherapy with hydroxycamptothecin reduces peritoneal carcinomatosis: results of an experimental study.
    Li PC; Chen LD; Zheng F; Li Y
    J Cancer Res Clin Oncol; 2008 Jan; 134(1):37-44. PubMed ID: 17665213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experimental study on intraperitoneal versus intravenous CPT-11 for peritoneal seeding and liver metastasis].
    Maruyama M; Ebuchi M; Nagahama T; Takashima I; Hasegawa K
    Gan To Kagaku Ryoho; 2003 Oct; 30(11):1602-4. PubMed ID: 14619474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EGFR, HER2 and HER3 dimerization patterns guide targeted inhibition in two histotypes of esophageal cancer.
    Fichter CD; Timme S; Braun JA; Gudernatsch V; Schöpflin A; Bogatyreva L; Geddert H; Faller G; Klimstra D; Tang L; Hauschke D; Werner M; Lassmann S
    Int J Cancer; 2014 Oct; 135(7):1517-30. PubMed ID: 24510732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Antitumor Immune Response and Poor Outcomes of Patients.
    Mari L; Hoefnagel SJM; Zito D; van de Meent M; van Endert P; Calpe S; Sancho Serra MDC; Heemskerk MHM; van Laarhoven HWM; Hulshof MCCM; Gisbertz SS; Medema JP; van Berge Henegouwen MI; Meijer SL; Bergman JJGHM; Milano F; Krishnadath KK
    Gastroenterology; 2018 Sep; 155(3):784-798. PubMed ID: 29885883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological targeting of p38 MAP-Kinase 6 (MAP2K6) inhibits the growth of esophageal adenocarcinoma.
    Lin S; Liu K; Zhang Y; Jiang M; Lu R; Folts CJ; Gao X; Noble MD; Zhao T; Zhou Z; Lan X; Que J
    Cell Signal; 2018 Nov; 51():222-232. PubMed ID: 30102978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.