These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28225827)

  • 1. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment.
    Kwak NS; Müller KR; Lee SW
    PLoS One; 2017; 12(2):e0172578. PubMed ID: 28225827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Convolutional Neural Network for Enhancing the Detection of SSVEP in the Presence of Competing Stimuli.
    Ravi A; Manuel J; Heydari N; Jiang N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6323-6326. PubMed ID: 31947288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Convolutional Neural Network for the Detection of Asynchronous Steady State Motion Visual Evoked Potential.
    Zhang X; Xu G; Mou X; Ravi A; Li M; Wang Y; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1303-1311. PubMed ID: 31071044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CNN-based compare network for classification of SSVEPs in human walking.
    Wu C; Qiu S; Xing J; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2986-2990. PubMed ID: 33018633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lower limb exoskeleton control system based on steady state visual evoked potentials.
    Kwak NS; Müller KR; Lee SW
    J Neural Eng; 2015 Oct; 12(5):056009. PubMed ID: 26291321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.
    Jiao Y; Zhang Y; Wang Y; Wang B; Jin J; Wang X
    Int J Neural Syst; 2018 May; 28(4):1750039. PubMed ID: 28982285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing user-dependent and user-independent training of CNN for SSVEP BCI.
    Ravi A; Beni NH; Manuel J; Jiang N
    J Neural Eng; 2020 Apr; 17(2):026028. PubMed ID: 31923910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.
    Morikawa N; Tanaka T; Islam MR
    J Neurosci Methods; 2018 Jul; 304():1-10. PubMed ID: 29653130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis.
    Pan J; Gao X; Duan F; Yan Z; Gao S
    J Neural Eng; 2011 Jun; 8(3):036027. PubMed ID: 21566275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.
    Ikeda A; Washizawa Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolutional Correlation Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface.
    Li Y; Xiang J; Kesavadas T
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2681-2690. PubMed ID: 33201824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface.
    Chen YF; Atal K; Xie SQ; Liu Q
    J Neural Eng; 2017 Aug; 14(4):046028. PubMed ID: 28357991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing unsupervised canonical correlation analysis-based frequency detection of SSVEPs by incorporating background EEG.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3053-6. PubMed ID: 25570635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mobile SSVEP-based brain-computer interface for freely moving humans: the robustness of canonical correlation analysis to motion artifacts.
    Lin YP; Wang Y; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1350-3. PubMed ID: 24109946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.