BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 28226192)

  • 21. Hydroxylated near-infrared BODIPY fluorophores as intracellular pH sensors.
    Salim MM; Owens EA; Gao T; Lee JH; Hyun H; Choi HS; Henary M
    Analyst; 2014 Oct; 139(19):4862-73. PubMed ID: 25105177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bodipy dyes with tunable redox potentials and functional groups for further tethering: preparation, electrochemical, and spectroscopic characterization.
    Krumova K; Cosa G
    J Am Chem Soc; 2010 Dec; 132(49):17560-9. PubMed ID: 21090723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge-recombination fluorescence from push-pull electronic systems constructed around amino-substituted styryl-BODIPY dyes.
    Nano A; Ziessel R; Stachelek P; Harriman A
    Chemistry; 2013 Sep; 19(40):13528-37. PubMed ID: 24038505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Triphenylamine and Ferrocenyl Donor-π-donor Vinyl BODIPY Derivatives as Photoacoustic Contrast Agents.
    Hatamimoslehabadi M; Frenette M; Bag S; Gilligan GE; La J; Yelleswarapu C; Rochford J
    Photochem Photobiol; 2022 Jan; 98(1):62-72. PubMed ID: 33811760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visible-Light Photoactive, Highly Efficient Triplet Sensitizers Based on Iodinated Aza-BODIPYs: Synthesis, Photophysics and Redox Properties.
    Gut A; Łapok Ł; Drelinkiewicz D; Pędziński T; Marciniak B; Nowakowska M
    Chem Asian J; 2018 Jan; 13(1):55-65. PubMed ID: 29120080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New insights into two-photon absorption properties of functionalized aza-BODIPY dyes at telecommunication wavelengths: a theoretical study.
    Liu X; Zhang J; Li K; Sun X; Wu Z; Ren A; Feng J
    Phys Chem Chem Phys; 2013 Apr; 15(13):4666-76. PubMed ID: 23435838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thieno[3,2-b]thiophene fused BODIPYs: synthesis, near-infrared luminescence and photosensitive properties.
    Sun Y; Qu Z; Zhou Z; Gai L; Lu H
    Org Biomol Chem; 2019 Apr; 17(14):3617-3622. PubMed ID: 30912787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thienylpiperidine Donor NIR Xanthene-Based Dye for Photoacoustic Imaging.
    Rathnamalala CSL; Pino NW; Herring BS; Hooper M; Gwaltney SR; Chan J; Scott CN
    Org Lett; 2021 Oct; 23(19):7640-7644. PubMed ID: 34550707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual Functioning Thieno-Pyrrole Fused BODIPY Dyes for NIR Optical Imaging and Photodynamic Therapy: Singlet Oxygen Generation without Heavy Halogen Atom Assistance.
    Watley RL; Awuah SG; Bio M; Cantu R; Gobeze HB; Nesterov VN; Das SK; D'Souza F; You Y
    Chem Asian J; 2015 Jun; 10(6):1335-43. PubMed ID: 25779683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hetero Bodipy-dimers as heavy atom-free triplet photosensitizers showing a long-lived triplet excited state for triplet-triplet annihilation upconversion.
    Wu W; Cui X; Zhao J
    Chem Commun (Camb); 2013 Oct; 49(79):9009-11. PubMed ID: 23969566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Access to Pyridinyl or Pyridinium Aza-BODIPYs with Tunable Near-Infrared Fluorescence through ICT from 4-Pyridinyl Pyrroles.
    Liu C; Jin Y; Ji X; Zhao W; Dong X
    Chemistry; 2022 Oct; 28(56):e202201503. PubMed ID: 35794081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosensitizer that selectively generates singlet oxygen in nonpolar environments: photophysical mechanism and efficiency for a covalent BODIPY dimer.
    Zhang XF; Yang X
    J Phys Chem B; 2013 Aug; 117(30):9050-5. PubMed ID: 23837434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of two photon absorption properties and intersystem crossing by charge transfer in pentaaryl boron-dipyrromethene (BODIPY) derivatives.
    Küçüköz B; Sevinç G; Yildiz E; Karatay A; Zhong F; Yılmaz H; Tutel Y; Hayvalı M; Zhao J; Yaglioglu HG
    Phys Chem Chem Phys; 2016 May; 18(19):13546-53. PubMed ID: 27138347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Conformationally Restricted Aza-BODIPY Platform for Stimulus-Responsive Probes with Enhanced Photoacoustic Properties.
    Zhou EY; Knox HJ; Liu C; Zhao W; Chan J
    J Am Chem Soc; 2019 Nov; 141(44):17601-17609. PubMed ID: 31660741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photochemical Properties and Stability of BODIPY Dyes.
    Rybczynski P; Smolarkiewicz-Wyczachowski A; Piskorz J; Bocian S; Ziegler-Borowska M; Kędziera D; Kaczmarek-Kędziera A
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-Infrared fluorescent unsymmetrical aza-BODIPYs: Synthesis, photophysics and TD-DFT calculations.
    Gut A; Ciejka J; Makuszewski J; Majewska I; Brela M; Łapok Ł
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120898. PubMed ID: 35077984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of a Monoiodo Aza-BODIPY Near-Infrared Photosensitizer: in vitro and in vivo Evaluation for Photodynamic Therapy.
    Yu Z; Zhou J; Ji X; Lin G; Xu S; Dong X; Zhao W
    J Med Chem; 2020 Sep; 63(17):9950-9964. PubMed ID: 32787080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BODIPY-fused uracil: synthesis, photophysical properties, and applications.
    Nagpal A; Tyagi N; Neelakandan PP
    Photochem Photobiol Sci; 2024 Feb; 23(2):365-376. PubMed ID: 38227134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-Infrared Absorbing Aza-BODIPY Dyes for Optoelectronic Applications.
    Pinjari D; Patil Y; Misra R
    Chem Asian J; 2024 May; ():e202400167. PubMed ID: 38733151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monofluorination and Trifluoromethylation of BODIPY Dyes for Prolonged Single-Molecule Detection.
    Huynh AM; Menges J; Vester M; Dier T; Huch V; Volmer DA; Jung G
    Chemphyschem; 2016 Feb; 17(3):433-42. PubMed ID: 26630330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.