These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 28226212)
21. Co-doped ZnS with large adsorption capacity for recovering Hg Liu W; Xu H; Liao Y; Wang Y; Yan N; Qu Z Environ Sci Pollut Res Int; 2020 Jun; 27(16):20469-20477. PubMed ID: 32246424 [TBL] [Abstract][Full Text] [Related]
22. Novel Counteraction Effect of H Wang C; Xie F; Chang S; Ding Z; Mei J; Yang S Environ Sci Technol; 2022 Jan; 56(1):642-651. PubMed ID: 34902247 [TBL] [Abstract][Full Text] [Related]
23. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery. Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289 [TBL] [Abstract][Full Text] [Related]
24. Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3-xMnx)1-δO4. Yang S; Yan N; Guo Y; Wu D; He H; Qu Z; Li J; Zhou Q; Jia J Environ Sci Technol; 2011 Feb; 45(4):1540-6. PubMed ID: 21207939 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous Adsorption of Gaseous Hg Wang C; Lv P; Ma Y; Mei J; Yang S Environ Sci Technol; 2022 Aug; 56(15):10977-10986. PubMed ID: 35834585 [TBL] [Abstract][Full Text] [Related]
26. Assessing sorbents for mercury control in coal-combustion flue gas. Sjostrom S; Ebner T; Ley T; Slye R; Richardson C; Machalek T; Richardson M; Chang R J Air Waste Manag Assoc; 2002 Aug; 52(8):902-11. PubMed ID: 12184688 [TBL] [Abstract][Full Text] [Related]
27. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Chou CP; Chiu CH; Chang TC; Hsi HC J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737 [TBL] [Abstract][Full Text] [Related]
28. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant. Liu Y; Kelly DJ; Yang H; Lin CC; Kuznicki SM; Xu Z Environ Sci Technol; 2008 Aug; 42(16):6205-10. PubMed ID: 18767688 [TBL] [Abstract][Full Text] [Related]
29. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature. Li H; Wu CY; Li Y; Li L; Zhao Y; Zhang J J Hazard Mater; 2012 Dec; 243():117-23. PubMed ID: 23131500 [TBL] [Abstract][Full Text] [Related]
30. Adsorbents for capturing mercury in coal-fired boiler flue gas. Yang H; Xu Z; Fan M; Bland AE; Judkins RR J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578 [TBL] [Abstract][Full Text] [Related]
31. A novel multi-functional magnetic Fe-Ti-V spinel catalyst for elemental mercury capture and callback from flue gas. Yang S; Guo Y; Yan N; Wu D; He H; Xie J; Qu Z; Yang C; Jia J Chem Commun (Camb); 2010 Nov; 46(44):8377-9. PubMed ID: 20927432 [TBL] [Abstract][Full Text] [Related]
32. Regenerable sorbents for mercury capture in simulated coal combustion flue gas. Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255 [TBL] [Abstract][Full Text] [Related]
33. Novel Synergistic Effect of Fe and Mo in FeMoS Wang C; Zhang X; Mei J; Hu Q; Yang S Environ Sci Technol; 2020 Jan; 54(1):586-594. PubMed ID: 31774263 [TBL] [Abstract][Full Text] [Related]
34. Gaseous mercury re-emission from wet flue gas desulfurization wastewater aeration basins: A review. Hsu CJ; Atkinson JD; Chung A; Hsi HC J Hazard Mater; 2021 Oct; 420():126546. PubMed ID: 34252671 [TBL] [Abstract][Full Text] [Related]
35. Active methods of mercury removal from flue gases. Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741 [TBL] [Abstract][Full Text] [Related]
36. The fate and behavior of mercury in coal-fired power plants. Meij R; Vredenbregt LH; te Winkel H J Air Waste Manag Assoc; 2002 Aug; 52(8):912-7. PubMed ID: 12184689 [TBL] [Abstract][Full Text] [Related]
38. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion. Otero-Rey JR; López-Vilariño JM; Moreda-Piñeiro J; Alonso-Rodríguez E; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D Environ Sci Technol; 2003 Nov; 37(22):5262-7. PubMed ID: 14655716 [TBL] [Abstract][Full Text] [Related]
39. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Li H; Wu CY; Li Y; Zhang J Environ Sci Technol; 2011 Sep; 45(17):7394-400. PubMed ID: 21770402 [TBL] [Abstract][Full Text] [Related]
40. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics. Xiong S; Xiao X; Huang N; Dang H; Liao Y; Zou S; Yang S Environ Sci Technol; 2017 Jan; 51(1):531-539. PubMed ID: 27997120 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]