These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28226237)

  • 1. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics.
    Neale DB; Martínez-García PJ; De La Torre AR; Montanari S; Wei XX
    Annu Rev Plant Biol; 2017 Apr; 68():457-483. PubMed ID: 28226237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Progress in research on forest tree genomics].
    Gan SM; Su XH
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):133-42. PubMed ID: 16622311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Populus: a model system for plant biology.
    Jansson S; Douglas CJ
    Annu Rev Plant Biol; 2007; 58():435-58. PubMed ID: 17280524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the sequencing of the first tree genome: Populus trichocarpa.
    Wullschleger SD; Weston DJ; DiFazio SP; Tuskan GA
    Tree Physiol; 2013 Apr; 33(4):357-64. PubMed ID: 23100257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome.
    Lai CW; Yu Q; Hou S; Skelton RL; Jones MR; Lewis KL; Murray J; Eustice M; Guan P; Agbayani R; Moore PH; Ming R; Presting GG
    Mol Genet Genomics; 2006 Jul; 276(1):1-12. PubMed ID: 16703363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomics, domestication, and evolution of forest trees.
    Sederoff R; Myburg A; Kirst M
    Cold Spring Harb Symp Quant Biol; 2009; 74():303-17. PubMed ID: 20375318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.
    Harfouche A; Meilan R; Altman A
    Tree Physiol; 2014 Nov; 34(11):1181-98. PubMed ID: 24695726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [From population genetics to population genomics of forest trees: integrated population genomics approach].
    Krutovskiĭ KV
    Genetika; 2006 Oct; 42(10):1304-18. PubMed ID: 17152702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tapping the promise of genomics in species with complex, nonmodel genomes.
    Hirsch CN; Buell CR
    Annu Rev Plant Biol; 2013; 64():89-110. PubMed ID: 23451780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Progress in research on forest tree comparative genomics].
    Wang YX; Xu LA; Huang MR; Xu Y
    Yi Chuan; 2007 Oct; 29(10):1199-206. PubMed ID: 17905709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of plant genomes: scaling up from a population perspective.
    Flowers JM; Purugganan MD
    Curr Opin Genet Dev; 2008 Dec; 18(6):565-70. PubMed ID: 19131240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What genes make a tree a tree?
    Groover AT
    Trends Plant Sci; 2005 May; 10(5):210-4. PubMed ID: 15882652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CartograTree: connecting tree genomes, phenotypes and environment.
    Vasquez-Gross HA; Yu JJ; Figueroa B; Gessler DD; Neale DB; Wegrzyn JL
    Mol Ecol Resour; 2013 May; 13(3):528-37. PubMed ID: 23433187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops.
    Li T; Wang YH; Liu JX; Feng K; Xu ZS; Xiong AS
    Crit Rev Biotechnol; 2019 Aug; 39(5):680-692. PubMed ID: 31068014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon.
    Argyris JM; Pujol M; Martín-Hernández AM; Garcia-Mas J
    Physiol Plant; 2015 Sep; 155(1):4-11. PubMed ID: 25594580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era.
    Kovalchuk A; Keriö S; Oghenekaro AO; Jaber E; Raffaello T; Asiegbu FO
    Annu Rev Phytopathol; 2013; 51():221-44. PubMed ID: 23682916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.
    Liu L; Filkov V; Groover A
    Physiol Plant; 2014 Jun; 151(2):156-63. PubMed ID: 24117954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complex jujube genome provides insights into fruit tree biology.
    Liu MJ; Zhao J; Cai QL; Liu GC; Wang JR; Zhao ZH; Liu P; Dai L; Yan G; Wang WJ; Li XS; Chen Y; Sun YD; Liu ZG; Lin MJ; Xiao J; Chen YY; Li XF; Wu B; Ma Y; Jian JB; Yang W; Yuan Z; Sun XC; Wei YL; Yu LL; Zhang C; Liao SG; He RJ; Guang XM; Wang Z; Zhang YY; Luo LH
    Nat Commun; 2014 Oct; 5():5315. PubMed ID: 25350882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis as a model for wood formation.
    Zhang J; Elo A; Helariutta Y
    Curr Opin Biotechnol; 2011 Apr; 22(2):293-9. PubMed ID: 21144727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios.
    Lin H; Yu M; Wang X; Zhang XH
    BMC Genomics; 2018 Feb; 19(1):135. PubMed ID: 29433445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.