These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28226247)

  • 21. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.
    Paredes L; Fernandez-Fontaina E; Lema JM; Omil F; Carballa M
    Sci Total Environ; 2016 May; 551-552():640-8. PubMed ID: 26897407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of recalcitrant contaminants of emerging concern onto activated carbon: A laboratory and pilot-scale study.
    Diniz V; Gasparini Fernandes Cunha D; Rath S
    J Environ Manage; 2023 Jan; 325(Pt A):116489. PubMed ID: 36257229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of bromide and bromate from drinking water using granular activated carbon.
    Zhang YQ; Wu QP; Zhang JM; Yang XH
    J Water Health; 2015 Mar; 13(1):73-8. PubMed ID: 25719467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implications of biological activated carbon filters for micropollutant removal in wastewater treatment.
    Fundneider T; Acevedo Alonso V; Wick A; Albrecht D; Lackner S
    Water Res; 2021 Feb; 189():116588. PubMed ID: 33221588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Empty bed contact time: The key for micropollutant removal in activated carbon filters.
    Fundneider T; Acevedo Alonso V; Abbt-Braun G; Wick A; Albrecht D; Lackner S
    Water Res; 2021 Mar; 191():116765. PubMed ID: 33412419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of antibiotics in sand, GAC, GAC sandwich and anthracite/sand biofiltration systems.
    Xu L; Campos LC; Li J; Karu K; Ciric L
    Chemosphere; 2021 Jul; 275():130004. PubMed ID: 33640744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of trace organic micropollutants by drinking water biological filters.
    Zearley TL; Summers RS
    Environ Sci Technol; 2012 Sep; 46(17):9412-9. PubMed ID: 22881485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advanced treatment process for pharmaceuticals, endocrine disruptors, and flame retardants removal.
    Sundaram V; Emerick RW; Shumaker SE
    Water Environ Res; 2014 Feb; 86(2):111-22. PubMed ID: 24645541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GAC adsorption filters as barriers for viruses, bacteria and protozoan (oo)cysts in water treatment.
    Hijnen WA; Suylen GM; Bahlman JA; Brouwer-Hanzens A; Medema GJ
    Water Res; 2010 Feb; 44(4):1224-34. PubMed ID: 19892384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing granular media filtration for the removal of chemical contaminants from wastewater.
    Ho L; Grasset C; Hoefel D; Dixon MB; Leusch FD; Newcombe G; Saint CP; Brookes JD
    Water Res; 2011 May; 45(11):3461-72. PubMed ID: 21529882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal integration of vacuum UV with granular biofiltration for advanced wastewater treatment: Impact of process sequence on CECs removal and microbial ecology.
    Piras F; Nakhla G; Murgolo S; De Ceglie C; Mascolo G; Bell K; Jeanne T; Mele G; Santoro D
    Water Res; 2022 Jul; 220():118638. PubMed ID: 35640512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofiltration for removal of BOM and residual ammonia following control of bromate formation.
    Wert EC; Neemann JJ; Rexing DJ; Zegers RE
    Water Res; 2008 Jan; 42(1-2):372-8. PubMed ID: 17692888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of disinfection by-products formation potential by biologically intensified process.
    An D; Li WG; Cui FY; He X; Zhang JS
    J Environ Sci (China); 2005; 17(2):315-8. PubMed ID: 16295913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial communities and processes in biofilters for post-treatment of ozonated wastewater treatment plant effluent.
    Sauter D; Steuer A; Wasmund K; Hausmann B; Szewzyk U; Sperlich A; Gnirss R; Cooper M; Wintgens T
    Sci Total Environ; 2023 Jan; 856(Pt 2):159265. PubMed ID: 36206900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance of novel media in stratified filters to remove organic carbon from lake water.
    Grace MA; Clifford E; Healy MG
    Water Res; 2016 Nov; 104():371-380. PubMed ID: 27576156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofiltration as pre-treatment to water harvesting and recycling.
    Mohammed T; Vigneswaran S; Kandasamy J
    Water Sci Technol; 2011; 63(10):2097-105. PubMed ID: 21977626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain.
    Eschauzier C; Beerendonk E; Scholte-Veenendaal P; De Voogt P
    Environ Sci Technol; 2012 Feb; 46(3):1708-15. PubMed ID: 22201258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners.
    Scheurer M; Storck FR; Brauch HJ; Lange FT
    Water Res; 2010 Jun; 44(12):3573-84. PubMed ID: 20462625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of geosmin and 2-methylisoborneol by biological filtration.
    Elhadi SL; Huck PM; Slawson RM
    Water Sci Technol; 2004; 49(9):273-80. PubMed ID: 15237635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.
    Kaarela OE; Härkki HA; Palmroth MR; Tuhkanen TA
    Environ Technol; 2015; 36(5-8):681-92. PubMed ID: 25242545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.