These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2822807)

  • 1. Evaluation and improvements of a rapid microassay for measuring superoxide anion production by phagocytes. 2. Biochemical aspects.
    Leslie RG; Allen R
    J Immunol Methods; 1987 Nov; 103(2):261-6. PubMed ID: 2822807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and improvement of a rapid microassay for measuring superoxide anion production by phagocytes. 1. Spectrophotometric aspects.
    Leslie RG
    J Immunol Methods; 1987 Nov; 103(2):253-9. PubMed ID: 2822806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous monitoring of oxygen consumption and superoxide production by particle-stimulated human polymorphonuclear leukocytes.
    Markert M; Allaz MJ; Frei J
    FEBS Lett; 1980 May; 113(2):225-30. PubMed ID: 6248360
    [No Abstract]   [Full Text] [Related]  

  • 4. Ampicillin serves as an electron donor.
    Umeki S
    Int J Biochem; 1990; 22(11):1291-3. PubMed ID: 2175275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic microplate assay for superoxide production by neutrophils and other phagocytic cells.
    Mayo LA; Curnutte JT
    Methods Enzymol; 1990; 186():567-75. PubMed ID: 2172715
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of muramyl peptides and tumor necrosis factor on oxidative responses of human blood phagocytes.
    Jupin C; Parant M; Chedid L
    Immunol Lett; 1989 Sep; 22(3):187-92. PubMed ID: 2553589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes.
    Hyslop PA; Sklar LA
    Anal Biochem; 1984 Aug; 141(1):280-6. PubMed ID: 6093625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide production by stimulated neutrophils: temperature effect.
    Black CD; Cook JA; Russo A; Samuni A
    Free Radic Res Commun; 1991; 12-13 Pt 1():27-37. PubMed ID: 1649095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of superoxide production by human eosinophils and neutrophils.
    Learn DB; Brestel EP
    Agents Actions; 1982 Oct; 12(4):485-8. PubMed ID: 6295109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pentoxifylline-mediated reduction of superoxide anion production by human spermatozoa.
    Gavella M; Lipovac V
    Andrologia; 1992; 24(1):37-9. PubMed ID: 1325743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of superoxide anion production using maximal rate of cytochrome (III) C reduction in phorbol ester stimulated neutrophils, immobilised to microtiter plates.
    Björquist P; Palmer M; Ek B
    Biochem Pharmacol; 1994 Nov; 48(10):1967-72. PubMed ID: 7986208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excretion of superoxide by phagocytes measured with cytochrome c entrapped in resealed erythrocyte ghosts.
    Roos D; Eckmann CM; Yazdanbakhsh M; Hamers MN; de Boer M
    J Biol Chem; 1984 Feb; 259(3):1770-5. PubMed ID: 6319411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.).
    Bell KL; Smith VJ
    Dev Comp Immunol; 1993; 17(3):211-9. PubMed ID: 8392007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of ferricytochrome C may underestimate superoxide production by monocytes.
    Arthur MJ; Kowalski-Saunders P; Gurney S; Tolcher R; Bull FG; Wright R
    J Immunol Methods; 1987 Apr; 98(1):63-9. PubMed ID: 3031166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide anion production by circulating polymorphonuclear leucocytes in rheumatoid arthritis.
    Cencetti A; De Martino M; Graziani E; Maddali Bongi S; Palermo C; Pavari E; Zoppi M
    Clin Rheumatol; 1990 Mar; 9(1):51-5. PubMed ID: 2159392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide production by Crohn's disease neutrophils.
    Curran FT; Allan RN; Keighley MR
    Gut; 1991 Apr; 32(4):399-402. PubMed ID: 1851125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide anion production from human neutrophils measured with an improved kinetic and endpoint microassay.
    Chapman-Kirkland ES; Wasvary JS; Seligmann BE
    J Immunol Methods; 1991 Aug; 142(1):95-104. PubMed ID: 1655912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide anion production by rainbow trout macrophages detected by the reduction of ferricytochrome C.
    Secombes CJ; Chung S; Jeffries AH
    Dev Comp Immunol; 1988; 12(1):201-6. PubMed ID: 2832224
    [No Abstract]   [Full Text] [Related]  

  • 19. In vivo latex phagocytosis primes the Kupffer cells and hepatic neutrophils to generate superoxide anion.
    Bautista AP; Schuler A; Spolarics Z; Spitzer JJ
    J Leukoc Biol; 1992 Jan; 51(1):39-45. PubMed ID: 1311012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.