These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
559 related articles for article (PubMed ID: 28228130)
1. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'. Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome analysis of the floral transition in Rosa chinensis 'Old Blush' and R. odorata var. gigantea. Guo X; Yu C; Luo L; Wan H; Li Y; Wang J; Cheng T; Pan H; Zhang Q Sci Rep; 2017 Jul; 7(1):6068. PubMed ID: 28729527 [TBL] [Abstract][Full Text] [Related]
3. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea. Guo X; Yu C; Luo L; Wan H; Zhen N; Li Y; Cheng T; Wang J; Pan H; Zhang Q Plant Mol Biol; 2018 May; 97(1-2):113-130. PubMed ID: 29736762 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional Regulatory Network of GA Floral Induction Pathway in LA Hybrid Lily. Li W; Yong Y; Zhang Y; Lyu Y Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31159293 [TBL] [Abstract][Full Text] [Related]
5. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis. Han Y; Wan H; Cheng T; Wang J; Yang W; Pan H; Zhang Q Sci Rep; 2017 Feb; 7():43382. PubMed ID: 28225056 [TBL] [Abstract][Full Text] [Related]
6. A survey of flowering genes reveals the role of gibberellins in floral control in rose. Remay A; Lalanne D; Thouroude T; Le Couviour F; Hibrand-Saint Oyant L; Foucher F Theor Appl Genet; 2009 Sep; 119(5):767-81. PubMed ID: 19533080 [TBL] [Abstract][Full Text] [Related]
7. Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars. Kim J; Park JH; Lim CJ; Lim JY; Ryu JY; Lee BW; Choi JP; Kim WB; Lee HY; Choi Y; Kim D; Hur CG; Kim S; Noh YS; Shin C; Kwon SY BMC Genomics; 2012 Nov; 13():657. PubMed ID: 23171001 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Analysis of He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185 [TBL] [Abstract][Full Text] [Related]
9. Han Y; Tang A; Yu J; Cheng T; Wang J; Yang W; Pan H; Zhang Q Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31330828 [No Abstract] [Full Text] [Related]
10. A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana 'Changchun'. Sun L; Jiang Z; Ju Y; Zou X; Wan X; Chen Y; Yin Z Mol Genet Genomics; 2021 Jan; 296(1):207-222. PubMed ID: 33146745 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification and functional analysis of JmjC domain-containing genes in flower development of Rosa chinensis. Dong Y; Lu J; Liu J; Jalal A; Wang C Plant Mol Biol; 2020 Mar; 102(4-5):417-430. PubMed ID: 31898146 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Hu J; Liu Y; Tang X; Rao H; Ren C; Chen J; Wu Q; Jiang Y; Geng F; Pei J Sci Rep; 2020 Jun; 10(1):9680. PubMed ID: 32541892 [TBL] [Abstract][Full Text] [Related]
13. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium. Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q PLoS One; 2015; 10(5):e0128009. PubMed ID: 26009891 [TBL] [Abstract][Full Text] [Related]
14. New resources for studying the rose flowering process. Foucher F; Chevalier M; Corre C; Soufflet-Freslon V; Legeai F; Hibrand-Saint Oyant L Genome; 2008 Oct; 51(10):827-37. PubMed ID: 18923534 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome Analysis of Zhang F; Cheng G; Shu X; Wang N; Wang Z Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883454 [No Abstract] [Full Text] [Related]
16. Genomic approach to study floral development genes in Rosa sp. Dubois A; Remay A; Raymond O; Balzergue S; Chauvet A; Maene M; Pécrix Y; Yang SH; Jeauffre J; Thouroude T; Boltz V; Martin-Magniette ML; Janczarski S; Legeai F; Renou JP; Vergne P; Le Bris M; Foucher F; Bendahmane M PLoS One; 2011; 6(12):e28455. PubMed ID: 22194838 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea. Fan Z; Li J; Li X; Wu B; Wang J; Liu Z; Yin H Sci Rep; 2015 May; 5():9729. PubMed ID: 25978548 [TBL] [Abstract][Full Text] [Related]
18. An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat. Jing D; Chen W; Hu R; Zhang Y; Xia Y; Wang S; He Q; Guo Q; Liang G Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698310 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily. Li W; Liu X; Lu Y BMC Genomics; 2016 Aug; 17(1):664. PubMed ID: 27549794 [TBL] [Abstract][Full Text] [Related]
20. Molecular Evidences for the Interactions of Auxin, Gibberellin, and Cytokinin in Bent Peduncle Phenomenon in Rose ( Jing W; Zhang S; Fan Y; Deng Y; Wang C; Lu J; Sun X; Ma N; Shahid MO; Li Y; Zhou X Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32085472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]