BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 28228130)

  • 1. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q
    BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis of the floral transition in Rosa chinensis 'Old Blush' and R. odorata var. gigantea.
    Guo X; Yu C; Luo L; Wan H; Li Y; Wang J; Cheng T; Pan H; Zhang Q
    Sci Rep; 2017 Jul; 7(1):6068. PubMed ID: 28729527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Li Y; Cheng T; Wang J; Pan H; Zhang Q
    Plant Mol Biol; 2018 May; 97(1-2):113-130. PubMed ID: 29736762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional Regulatory Network of GA Floral Induction Pathway in LA Hybrid Lily.
    Li W; Yong Y; Zhang Y; Lyu Y
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31159293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis.
    Han Y; Wan H; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Sci Rep; 2017 Feb; 7():43382. PubMed ID: 28225056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A survey of flowering genes reveals the role of gibberellins in floral control in rose.
    Remay A; Lalanne D; Thouroude T; Le Couviour F; Hibrand-Saint Oyant L; Foucher F
    Theor Appl Genet; 2009 Sep; 119(5):767-81. PubMed ID: 19533080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars.
    Kim J; Park JH; Lim CJ; Lim JY; Ryu JY; Lee BW; Choi JP; Kim WB; Lee HY; Choi Y; Kim D; Hur CG; Kim S; Noh YS; Shin C; Kwon SY
    BMC Genomics; 2012 Nov; 13():657. PubMed ID: 23171001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Analysis of
    He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y
    G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Han Y; Tang A; Yu J; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31330828
    [No Abstract]   [Full Text] [Related]  

  • 10. A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana 'Changchun'.
    Sun L; Jiang Z; Ju Y; Zou X; Wan X; Chen Y; Yin Z
    Mol Genet Genomics; 2021 Jan; 296(1):207-222. PubMed ID: 33146745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification and functional analysis of JmjC domain-containing genes in flower development of Rosa chinensis.
    Dong Y; Lu J; Liu J; Jalal A; Wang C
    Plant Mol Biol; 2020 Mar; 102(4-5):417-430. PubMed ID: 31898146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.).
    Hu J; Liu Y; Tang X; Rao H; Ren C; Chen J; Wu Q; Jiang Y; Geng F; Pei J
    Sci Rep; 2020 Jun; 10(1):9680. PubMed ID: 32541892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q
    PLoS One; 2015; 10(5):e0128009. PubMed ID: 26009891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New resources for studying the rose flowering process.
    Foucher F; Chevalier M; Corre C; Soufflet-Freslon V; Legeai F; Hibrand-Saint Oyant L
    Genome; 2008 Oct; 51(10):827-37. PubMed ID: 18923534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome Analysis of
    Zhang F; Cheng G; Shu X; Wang N; Wang Z
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883454
    [No Abstract]   [Full Text] [Related]  

  • 16. Genomic approach to study floral development genes in Rosa sp.
    Dubois A; Remay A; Raymond O; Balzergue S; Chauvet A; Maene M; Pécrix Y; Yang SH; Jeauffre J; Thouroude T; Boltz V; Martin-Magniette ML; Janczarski S; Legeai F; Renou JP; Vergne P; Le Bris M; Foucher F; Bendahmane M
    PLoS One; 2011; 6(12):e28455. PubMed ID: 22194838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea.
    Fan Z; Li J; Li X; Wu B; Wang J; Liu Z; Yin H
    Sci Rep; 2015 May; 5():9729. PubMed ID: 25978548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat.
    Jing D; Chen W; Hu R; Zhang Y; Xia Y; Wang S; He Q; Guo Q; Liang G
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily.
    Li W; Liu X; Lu Y
    BMC Genomics; 2016 Aug; 17(1):664. PubMed ID: 27549794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Evidences for the Interactions of Auxin, Gibberellin, and Cytokinin in Bent Peduncle Phenomenon in Rose (
    Jing W; Zhang S; Fan Y; Deng Y; Wang C; Lu J; Sun X; Ma N; Shahid MO; Li Y; Zhou X
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32085472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.